16.已知數(shù)列a1,a2,a3,a4滿足a1=a4,$\frac{1}{2}$an-$\frac{1}{2{a}_{n+1}}$=an+1-$\frac{1}{{a}_{n}}$(n=1,2,3),則a1所有可能的值構(gòu)成的集合為(  )
A.{±$\frac{1}{2}$,±1}B.{±1,±2}C.{±$\frac{1}{2}$,±2}D.{±$\frac{1}{2}$,±1,±2}

分析 根據(jù)已知中$\frac{1}{2}$an-$\frac{1}{2{a}_{n+1}}$=an+1-$\frac{1}{{a}_{n}}$,可得$\frac{1}{2}$an+$\frac{1}{{a}_{n}}$=an+1+$\frac{1}{2{a}_{n+1}}$,利用排除法,可得答案.

解答 解:∵$\frac{1}{2}$an-$\frac{1}{2{a}_{n+1}}$=an+1-$\frac{1}{{a}_{n}}$,
∴$\frac{1}{2}$an+$\frac{1}{{a}_{n}}$=an+1+$\frac{1}{2{a}_{n+1}}$,
當(dāng)a1=a2=a3=a4=±1時(shí),顯然滿足條件,故排除C;
當(dāng)a1=a4=±2時(shí),a2=±1,a3=±$\frac{1}{2}$時(shí),顯然滿足條件,故排除A;
當(dāng)a1=a4=±$\frac{1}{2}$時(shí),a2=±2,a3=±1時(shí),顯然滿足條件,故排除B;
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是數(shù)列的遞推公式,本題難度較大,直接求值,分類比較多,易采用排除法解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的左、右焦點(diǎn)分別為F1、F2,若雙曲線上存在點(diǎn)P,使得|PF1|=3|PF2|,則此雙曲線的離心率的取值范圍是( 。
A.(1,3]B.[3,+∞)C.(1,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.圓x2+y2+4x-2y+a=0截直線x+y+5=0所得弦的長(zhǎng)度為2,則實(shí)數(shù)a=( 。
A.-4B.-2C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.《張丘建算經(jīng)》中女子織布問(wèn)題為:某女子善于織布,一天比一天織得快,且從第2天開始,每天比前一天多織相同量的布,已知第一天織5尺布,一月(按30天計(jì))共織390尺布,則從第2天起每天比前一天多織( 。┏卟迹
A.$\frac{1}{2}$B.$\frac{8}{15}$C.$\frac{16}{31}$D.$\frac{16}{29}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.定義min{f(x),g(x)}為f(x)與g(x)中值的較小者,則函數(shù)f(x)=min{2-x2,x}的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.不等式組$\left\{\begin{array}{l}{-2x≤x+6}\\{7-x>1}\end{array}\right.$的整數(shù)解解集為{-2,-1,0,1,2,3,4,5};
不等式x2-1<3的解用區(qū)間表示為(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{3}$cos2x-2sinxcosx-$\sqrt{3}$sin2x.
(I)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(II)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]的最大值及所對(duì)應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知x0(0<x0<1)是函數(shù)f(x)=lnx-$\frac{1}{x-1}$的一個(gè)零點(diǎn),若a∈(0,x0),b∈(x0,1)則( 。
A.f(a)<0,f(b)<0B.f(a)>0,f(b)>0C.f(a)<0,f(b)>0D.f(a)>0,f(b)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)復(fù)數(shù)z=-1-i(i為虛數(shù)單位),z的共軛復(fù)數(shù)為$\overline{z}$,則|z•$\overline{z}$|=( 。
A.1B.$\sqrt{2}$C.2D.$\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案