5.已知三棱錐A-BCD中,AB⊥面BCD,BC⊥CD,AB=BC=CD=2,則三棱錐A-BCD的外接球體積為4$\sqrt{3}π$.

分析 取AD的中點(diǎn)O,連結(jié)OB、OC.由線面垂直的判定與性質(zhì),證出AB⊥BD且AC⊥CD,得到△ABD與△ACD是具有公共斜邊的直角三角形,從而得出OA=OB=OC=OD=$\frac{1}{2}$AD,所以A、B、C、D四點(diǎn)在以O(shè)為球心的球面上,再根據(jù)題中的數(shù)據(jù)利用勾股定理算出AD長(zhǎng),即可得到三棱錐A-BCD外接球的半徑大小.

解答 解:取AD的中點(diǎn)O,連結(jié)OB、OC
∵AB⊥平面BCD,CD?平面BCD,∴AB⊥CD,
又∵BC⊥CD,AB∩BC=B,∴CD⊥平面ABC,
∵AC?平面ABC,∴CD⊥AC,
∵OC是Rt△ADC的斜邊上的中線,OC=$\frac{1}{2}$AD.
同理可得:Rt△ABD中,OB=$\frac{1}{2}$AD,
∴OA=OB=OC=OD=$\frac{1}{2}$AD,可得A、B、C、D四點(diǎn)在以O(shè)為球心的球面上.
Rt△ABD中,AB=2且BD=2$\sqrt{2}$,可得AD=$\sqrt{4+8}$=2$\sqrt{3}$,
由此可得球O的半徑R=$\frac{1}{2}$AD=$\sqrt{3}$,
∴三棱錐A-BCD的外接球體積為$\frac{4}{3}π•(\sqrt{3})^{3}$=4$\sqrt{3}$π.
故答案為:4$\sqrt{3}$π.

點(diǎn)評(píng) 本題已知三棱錐的底面為直角三角形,求三棱錐A-BCD的外接球體積.著重考查了線面垂直的判定與性質(zhì)、勾股定理與球內(nèi)接多面體等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若函數(shù)f(x)=$\frac{2x-5}{x-3}$的值域是[-4,2).
(1)作出函數(shù)圖象;
(2)求f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$,$\overrightarrow$的夾角為30°,($\overrightarrow{a}$+2$\overrightarrow$)∥(2$\overrightarrow{a}$+λ$\overrightarrow$),則(($\overrightarrow{a}$+λ$\overrightarrow$))•($\overrightarrow{a}$-$\overrightarrow$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若α是銳角,且cos(α+$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$,則sinα的值等于( 。
A.$\frac{\sqrt{6}+3}{6}$B.-$\frac{\sqrt{6}-3}{6}$C.$\frac{2\sqrt{6}+1}{6}$D.$\frac{2\sqrt{6}-1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在y軸上的橢圓C的右頂點(diǎn)和上頂點(diǎn)分別為A、B,若△AOB的面積為$\frac{\sqrt{2}}{2}$.且直線AB經(jīng)過(guò)點(diǎn)P(-2,3$\sqrt{2}$)
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)S(-$\frac{1}{3}$,0)的動(dòng)直線l交橢圓C于M,N兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得無(wú)論l如何轉(zhuǎn)動(dòng),以MN為直徑的圓恒過(guò)點(diǎn)T,若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.等比數(shù)列{an}的前m項(xiàng)和為30,前2m項(xiàng)和為90,那么它的前3m項(xiàng)和為( 。
A.130B.180C.210D.260

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)$f(x)=\left\{\begin{array}{l}sinx\\ 5\frac{|x|}{x}\end{array}\right.\begin{array}{l},x>0\\ \\,x<0\end{array}$,則f(-1)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5,給出下列五個(gè)命題:
①d<0;②Sn>0;③S12<0;④數(shù)列{Sn}中的最大項(xiàng)為S11;⑤|a6|>|a7|.
其中正確命題的序號(hào)是:①⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列函數(shù)中周期為π的是( 。
A.y=|sinx|B.y=|cos2x|C.y=tan2xD.y=sin2x,x∈(0,2π)

查看答案和解析>>

同步練習(xí)冊(cè)答案