A. | 30° | B. | 45° | C. | 60° | D. | 75° |
分析 根據(jù)$\overrightarrow{a}$∥$\overrightarrow$得出(1+sinα)(1-cosα)-$\frac{3}{2}$×$\frac{1}{3}$=0,再根據(jù)sin2α+cos2α=1列出方程組,即可求出sinα=cosα,再由α為銳角即可求出α的值.
解答 解:∵$\overrightarrow{a}$=($\frac{3}{2}$,1+sina),$\overrightarrow$=(1-cosa,$\frac{1}{3}$),且$\overrightarrow{a}$∥$\overrightarrow$,
∴(1+sinα)(1-cosα)-$\frac{3}{2}$×$\frac{1}{3}$=0,
∴sinα-cosα-sinαcosα=-$\frac{1}{2}$①;
又sin2α+cos2α=(sinα-cosα)2+2sinαcosα=1②;
∴①×2+②得,(sinα-cosα)2+2(sinα-cosα)=0,
解得sinα-cosα=0或sinα-cosα=2(不合題意,舍去),
∴sinα=cosα,
又α為銳角,∴α=45°.
故選:B.
點評 本題考查了平面向量的共線定理與三角函數(shù)的化簡和應用問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?m∈R,使$f(x)=(m-1)•{x^{{m^2}-4m+3}}$是冪函數(shù) | |
B. | ?α,β∈R,使cos(α+β)=cosα+cosβ | |
C. | ?φ∈R,函數(shù)f(x)=sin(x+φ)都不是偶函數(shù) | |
D. | ?a>0,函數(shù)f(x)=ln2x+lnx-a有零點 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com