13.已知函數(shù)f(x)=|xex|-m(m∈R)有三個(gè)零點(diǎn),則m的取值范圍為(0,$\frac{1}{e}$).

分析 函數(shù)f(x)=|xex|-m(m∈R)有三個(gè)零點(diǎn),轉(zhuǎn)化為方程|xex|=m有三個(gè)不相等的實(shí)數(shù)解,即y=m與函數(shù)y=|xex|的圖象有三個(gè)交點(diǎn),利用導(dǎo)數(shù)法分析f(x)=xex的單調(diào)性和極值,進(jìn)而結(jié)合函數(shù)圖象的對(duì)折變換畫(huà)出函數(shù)y=|xex|的圖象,數(shù)形結(jié)合可得答案.

解答 解:函數(shù)f(x)=|xex|-m(m∈R)有三個(gè)零點(diǎn),令g(x)=xex,則g′(x)=(1+x)ex,
當(dāng)x<-1時(shí),g′(x)<0,當(dāng)x>-1時(shí),g′(x)>0,
故g(x)=xex在(-∞,-1)上為減函數(shù),在(-1,+∞)上是減函數(shù),
g(-1)=-$\frac{1}{e}$,
又由x<0時(shí),g(x)<0,當(dāng)x>0時(shí),g(x)>0,
故函數(shù)y=|xex|的圖象如下圖所示:

故當(dāng)m∈(0,$\frac{1}{e}$)時(shí),y=m與函數(shù)y=|xex|的圖象有三個(gè)交點(diǎn),
即方程|xex|=m有三個(gè)不相等的實(shí)數(shù)解,
故m的取值范圍是(0,$\frac{1}{e}$),
故答案為:(0,$\frac{1}{e}$).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù),函數(shù)的極值的求法,其中結(jié)合函數(shù)圖象的對(duì)折變換畫(huà)出函數(shù)y=|xex|的圖象,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知F1(-c,0),F(xiàn)2(c,0)為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的兩個(gè)焦點(diǎn),點(diǎn)P(不在x軸上)為橢圓上的一點(diǎn),且滿足${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}={c^2}$,則橢圓的離心率的取值范圍是( 。
A.$[{\frac{{\sqrt{3}}}{3},1})$B.$[{\frac{1}{3},\frac{1}{2}}]$C.$[{\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}})$D.$({0,\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)z滿足z=$\frac{2+ai}{1+i}$(i為虛數(shù)單位,a∈R),若復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于直角坐標(biāo)平面內(nèi)的直線y=-x上,則a的值為( 。
A.0B.lC.-lD.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知a、b是實(shí)數(shù),矩陣M=$[\begin{array}{l}{a}&{-\frac{1}{2}}\\{\frac{1}{2}}&\end{array}]$所對(duì)應(yīng)的變換T將點(diǎn)(2,2)變成了點(diǎn)P′($\sqrt{3}$-1,$\sqrt{3}$+1).
(1)求實(shí)數(shù)a、b的值;
(2)求矩陣M的逆矩陣N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a4+a10=20,則S13=(  )
A.6B.130C.200D.260

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.(x-$\sqrt{x}$)n的展開(kāi)式中各項(xiàng)的二項(xiàng)式系數(shù)之和為16,則展開(kāi)式中x2項(xiàng)的系數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖給出的是計(jì)算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$的值的一個(gè)程序框圖,則判斷框內(nèi)應(yīng)填入的條件是( 。
A.i≤1009B.i>1009C.i≤1010D.i>1010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:填空題

若數(shù)列滿足,則稱數(shù)列為“差遞減”數(shù)列.若數(shù)列是“差遞減”數(shù)列,且其通項(xiàng)與其前項(xiàng)和)滿足),則實(shí)數(shù)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\sqrt{3}$sinωx cosωx-sin2ωx+1(ω>0)相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$.
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)已知a,b,c分別為△ABC中角A,B,C的對(duì)邊,且滿足a=$\sqrt{3}$,f(A)=1,求△ABC 面積 S 的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案