17.設(shè)函數(shù)$f(x)=ax+\frac{1+(x-1)}{x-1}$,若a是從1,2,3三個數(shù)中任取的一個數(shù),b是從2,3,4,5四個數(shù)中任取的一個數(shù),則f(x)>b恒成立的概率為$\frac{5}{6}$.

分析 先把f(x)的解析式變形,用分離常數(shù)法,然后用均值不等式求出最小值,本題是一個古典概型,試驗發(fā)生包含的所有事件是12個,滿足條件的事件是10個,列舉出結(jié)果,即可得答案.

解答 解:函數(shù)$f(x)=ax+\frac{1+(x-1)}{x-1}$=ax+$\frac{1}{x-1}$+1
=a(x-1)+$\frac{1}{x-1}$+1+a≥2$\sqrt{a}$+1+a=($\sqrt{a}$+1)2,
當(dāng)且僅當(dāng)x=$\sqrt{\frac{1}{a}}$+1>1時,取“=”,
∴f(x)min=($\sqrt{a}$+1)2
于是f(x)>b恒成立就轉(zhuǎn)化為($\sqrt{a}$+1)2>b成立.
設(shè)事件A:“f(x)>b恒成立”,
則基本事件總數(shù)為12個,即
(1,2),(1,3),(1,4),(1,5);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5);
事件A包含事件:(1,2),(1,3);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5)共10個
由古典概型得P(A)=$\frac{10}{12}$=$\frac{5}{6}$.

點評 本題考查了古典概型概率,在使用古典概型的概率公式時,應(yīng)該注意:(1)要判斷該概率模型是不是古典概型;(2)要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù);當(dāng)解析式中含有分式,且分子分母是齊次的,注意運用分離常數(shù)法來進(jìn)行式子的變形,在使用均值不等式應(yīng)注意一定,二正,三相等,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若在區(qū)間(-1,1)任取實數(shù)a,則直線ax-y=0與圓(x-1)2+(y-2)2=1相交的概率為(  )
A.$\frac{5}{16}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)是定義在R上的偶函數(shù),且x≤0時,f(x)=log${\;}_{\frac{1}{2}}$(-x+1)
(1)求f(3)+f(-1)
(2)求函數(shù)f(x)的解析式;
(3)若f(a-1)<-1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=axlnx圖象上點(e,f(e))處的切線與直線y=2x平行,g(x)=x2-tx-2
(1)求函數(shù)f(x)的解析式;
(2)對一切x∈(0,e],3f(x)≥g(x)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f(x)是定義在R上的偶函數(shù),且x≤0時,$f(x)={log_{\frac{1}{2}}}(-x+1)$,若f(a-1)<-1,則a的取值范圍是(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知平面三角形和空間四面體有很多相似的性質(zhì),請你類比三角形的面積公式S=$\frac{1}{2}$(a+b+c)r(其中a、b、c是三角形的三條邊,r是三角形內(nèi)切圓的半徑),寫出一個關(guān)于四面體的與之類似的結(jié)論V=$\frac{1}{3}$(S1+S2+S3+S4)r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等差數(shù)列{an}的前n項和為Sn,且a3=5,則S5=( 。
A.3B.5C.9D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)f(x)=ax2+bx+c(a>0)滿足f(1+x)=f(1-x),則f(2x)與f(3x)的大小關(guān)系為(  )
A.f (3x)≥f (2xB.f (3x)≤f (2xC.f (3x)<f (2xD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-sin2x-$\frac{1}{2}$,x∈[0,$\frac{π}{2}$],則函數(shù)f(x)的值域為[-2,0].

查看答案和解析>>

同步練習(xí)冊答案