分析 根據(jù)正弦定理和商的關系化簡已知的式子,由內角的范圍和特殊角的三角函數(shù)值求出C的值,利用特殊角的三角函數(shù)值可求B,進而利用三角形內角和定理可得A的值.
解答 解:∵2csinA=atanC,
∴由正弦定理得,2sinCsinA=sinAtanC,
則2sinCsinA=sinA•$\frac{sinC}{cosC}$,
由sinCsinA≠0得,cosC=$\frac{1}{2}$,
∵0<C<π,
∴C=$\frac{π}{3}$,
∵cosB=$\frac{{\sqrt{3}}}{2}$,B∈(0,π),
∴B=$\frac{π}{6}$,
∴A=π-(B+C)=$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.
點評 本題考查了正弦定理的應用:邊角互化,以及利用商的關系切化弦,注意內角的范圍,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 甲是乙的充分條件,但不是乙的必要條件 | |
B. | 甲是乙的必要條件,但不是乙的充分條件 | |
C. | 甲是乙的充要條件 | |
D. | 甲既不是乙的充分條件,也不是乙的必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 42 | B. | 40 | C. | 30 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com