下列函數(shù)中,在區(qū)間上為增函數(shù)的是
A. | B. |
C. | D. |
A
解析試題分析: 因?yàn)檫x項(xiàng)A中,現(xiàn)看定義域x>-2,且是一個(gè)復(fù)合函數(shù),內(nèi)層是一次遞增函數(shù),外層是遞增的自然對(duì)數(shù)函數(shù)y=lnx,那么利用同增異減來(lái)判定,選項(xiàng)A成立。
選項(xiàng)B中,由于定義域x-1,同時(shí)因?yàn)閥=是遞增函數(shù),那么則可知是遞減函數(shù)。錯(cuò)誤
選項(xiàng)C中,表示的為底數(shù)小于1的指數(shù)函數(shù),因此是單調(diào)遞減函數(shù),錯(cuò)誤。而選項(xiàng)D中,由于,可見增區(qū)間為x>1,故錯(cuò)誤,選A.
考點(diǎn):本題主要考查了函數(shù)單調(diào)性的運(yùn)用以及判定問(wèn)題。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能利用對(duì)數(shù)函數(shù)與指數(shù)函數(shù)單調(diào)性的底數(shù)的范圍來(lái)確定處增減性,同時(shí)能根據(jù)導(dǎo)數(shù)的思想來(lái)證明對(duì)勾函數(shù)的單調(diào)性。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
定義新運(yùn)算“&”與“”:,,則函數(shù)
是( )
A.奇函數(shù) | B.偶函數(shù) |
C.非奇非偶函數(shù) | D.既是奇函數(shù)又是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
若函數(shù)y=ax+b-1(a>0且a≠1 )的圖象經(jīng)過(guò)一、三、四象限,則下列結(jié)論中正確的是( )
A.a(chǎn)>1且b<1 | B.0<a<1 且b<0 |
C.0<a<1 且b>0 | D.a(chǎn)>1 且b<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)方程的實(shí)根為,方程的實(shí)根為,函數(shù)則的大小關(guān)系是( )
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知上是增函數(shù),那么實(shí)數(shù)a的取值范圍是( )
A.(1,+) | B.() | C. | D.(1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知函數(shù)滿足,且是偶函數(shù),當(dāng)時(shí),,若在區(qū)間內(nèi),函數(shù)有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)函數(shù)f(x)=+lnx 則 ( )
A.x=為f(x)的極大值點(diǎn) | B.x=為f(x)的極小值點(diǎn) |
C.x=2為 f(x)的極大值點(diǎn) | D.x=2為 f(x)的極小值點(diǎn) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com