6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-5,x>6}\\{f(x+2),x≤6}\end{array}\right.$,則f(5)=( 。
A.-2B.0C.2D.4

分析 先求出f(5)=f(7),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{x-5,x>6}\\{f(x+2),x≤6}\end{array}\right.$,
∴f(5)=f(7)=7-5=2.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=3$,求$\frac{{x+{x^{-1}}+3}}{{{x^2}+{x^{-2}}-2}}$=$\frac{2}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.2名廚師和3位服務(wù)員共5人站成一排合影,若廚師不站兩邊,則不同排法的種數(shù)是( 。
A.60B.48C.42D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{3an}是首項(xiàng)為1公比為3的等比數(shù)列,則數(shù)列{$\frac{1}{{{a_{n+1}}{a_{n+3}}}}$}的前n項(xiàng)和Sn=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.實(shí)數(shù)m取什么數(shù)值時(shí),復(fù)數(shù)z=m-1+(m+1)i是實(shí)數(shù)( 。
A.0B.-1C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=$\sqrt{9-3x}$+$\frac{1}{{\sqrt{x+1}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,3)B.(-1,3]C.(-1,3)D.[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知全集U=R,集合A={y|y=3-x2,x∈R},集合B是函數(shù) y=$\sqrt{x-2}$+$\frac{2}{{\sqrt{5-x}}}$的定義域,集合C={x|5-a<x<a}.
(1)求集合A、B
(2)求集合A∪(∁UB)(結(jié)果用區(qū)間表示);
(3)若C⊆(A∩B),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.方程x2-4|x|+1=0的所有根的平方和為28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)的定義域?yàn)镽,且滿足f(x+2)=-f(x),
(1)求證:f(x)是周期函數(shù);
(2)若f(x)為奇函數(shù)且當(dāng)0≤x≤1時(shí),f(x)=$\frac{1}{2}$x,求使f(x)=-$\frac{1}{2}$在[0,2014]上的所有x的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案