分析 數(shù)列{3an}是首項為1公比為3的等比數(shù)列,可得${3}^{{a}_{n}}$=3n-1,an=n-1.于是$\frac{1}{{{a_{n+1}}{a_{n+3}}}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.利用“裂項求和”方法即可得出.
解答 解:數(shù)列{3an}是首項為1公比為3的等比數(shù)列,∴${3}^{{a}_{n}}$=1×3n-1,即${3}^{{a}_{n}}$=3n-1,可得an=n-1.
$\frac{1}{{{a_{n+1}}{a_{n+3}}}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
∴前n項和Sn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.
故答案為:$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$
點評 本題考查了指數(shù)運算性質、數(shù)列的通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 12 | C. | -12 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y平均增加1個單位 | B. | y平均增加2個單位 | ||
C. | y平均減少1個單位 | D. | y平均減少2個單位 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a為正相關,b為負相關,c為不相關 | B. | a為負相關,b為不相關,c為正相關 | ||
C. | a為負相關,b為正相關,c為不相關 | D. | a為正相關,b為不相關,c為負相關 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com