設(shè)函數(shù)
(1)若時函數(shù)有三個互不相同的零點,求的取值范圍;
(2)若函數(shù)內(nèi)沒有極值點,求的取值范圍;
(3)若對任意的,不等式上恒成立,求實數(shù)的取值范圍.
(1)的取值范圍是 ;(2) ;(3)    
(1)當(dāng)
有三個互不相同的零點,
有三個互不相同的實數(shù)根.
,則
均為減函數(shù),在為增函數(shù),

所以的取值范圍是 
(2)由題設(shè)可知,方程上沒有實數(shù)根,
,解得     
(3)∵,
∴當(dāng)時,;當(dāng)時,
∴函數(shù)的遞增區(qū)間為單調(diào)遞減區(qū)間為 
當(dāng)時, , 又,∴
,∴
又∵上恒成立,∴
上恒成立.
的最小值為,    ∴      
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù):
(Ⅰ)證明:f(x)+2+f(2a-x)=0對定義域內(nèi)的所有x都成立.
(Ⅱ)當(dāng)f(x)的定義域為[a+,a+1]時,求證:f(x)的值域為[-3,-2];
(Ⅲ)設(shè)函數(shù)g(x)=x2+|(x-a)f(x)| ,求g(x) 的最小值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),已知時,有最小值,
(1)求的值;(2)在(1)的條件下,求的解集;
(3)設(shè)集合,且,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中a為常數(shù),且
(1)若是奇函數(shù),求a的取值集合A;
(2)當(dāng)a=-1時,設(shè)的反函數(shù)為,且函數(shù)的圖像與 的圖像關(guān)于對稱,求的取值集合B。
(3)對于問題(1)(2)中的A、B,當(dāng)時,不等式
恒成立,求x的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知奇函數(shù)的定義域為實數(shù)集,且上是增函數(shù),當(dāng) 時,是否存在實數(shù),使對所有的恒成立?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且
(1)求的值域;
(2)定義在R上的函數(shù)滿足,且當(dāng),求在R上的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列結(jié)論中正確的個數(shù)是(  )
①當(dāng)a<0時,=a3 ②=|a|、酆瘮(shù)y=-(3x-7)0的定義域是(2, +∞)、苋,則2a+b=1
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx是R上的奇函數(shù),且f(1)=2,f(2)=10
(1)確定函數(shù)的解析式;(2)用定義證明在R上是增函數(shù);
(3)若關(guān)于x的不等式f(x2-4)+f(kx+2k)<0在x∈(0,1)上恒成立,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù),滿足對任意的,當(dāng)時,,則實數(shù)的取值范圍為(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案