15.已知等差數(shù)列{an}中,a1=1,a5=-3;
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前n項和Sn=-44,求n的值.

分析 (1)由等差數(shù)列通項公式求出公差d,由此能求出數(shù)列{an}的通項公式.
(2)由a1=1,d=-1,求出Sn,再由數(shù)列{an}的前n項和Sn=-44,能求出n的值.

解答 解:(1)∵等差數(shù)列{an}中,a1=1,a5=-3,
∴a5=1+4d=-3,
解得d=-1,
∴數(shù)列{an}的通項公式an=1+(n-1)×(-1)=2-n.
(2)∵a1=1,d=-1,
∴Sn=n+$\frac{n(n-1)}{2}×(-1)$=$\frac{3n-{n}^{2}}{2}$,
∵數(shù)列{an}的前n項和Sn=-44,
∴$\frac{3n-{n}^{2}}{2}=-44$,
解得n=11或n=-8(舍),
∴n的值為11.

點(diǎn)評 本題考查等差數(shù)列的通項公式及項數(shù)n的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.觀察下列各式:a+b=1,a2+b2=3,a3+b3=5,a4+b4=7…,則a10+b10=( 。
A.15B.17C.19D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知△ABC,∠A=$\frac{π}{3}$,BC=2,以BC為邊作一個等邊三角形BCP,則線段AP最大長度為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.(x+$\frac{a}{x}$)(3x-$\frac{2}{x}$)5的展開式中各項系數(shù)的和為3,則該展開式中常數(shù)項為(  )
A.2520B.1440C.-1440D.-2520

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$,(a∈R).
(1)設(shè)函數(shù)h(x)=f(x)-g(x),當(dāng)a>0時求函數(shù)h(x)的單調(diào)區(qū)間;
(2)若在[1,e](e=2.718…)上存在一點(diǎn)x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{x^2}{m}$-$\frac{y^2}{3m}$=1的一個焦點(diǎn)是(0,2),橢圓$\frac{x^2}{n}$-$\frac{y^2}{m}$=1的焦距等于4,則n=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖中所示的程序框圖,輸出S的表達(dá)式為( 。
A.$\frac{1}{99}$B.$\frac{1}{1+2+3+…+99}$C.$\frac{1}{100}$D.$\frac{1}{1+2+3+…+100}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x|-1<x<2},B={-1,0,1,2},則A∩B=( 。
A.{0,1}B.{-1,2}C.{-1,0}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某市為鼓勵居民節(jié)約用電,將實(shí)行階梯電價,該市每戶居民每月用電量劃分為三檔,電價實(shí)行分檔遞增.
第一檔電量:用電量不超過200千瓦時,電價標(biāo)準(zhǔn)為0.5元/千瓦時;
第二檔電量:用電量超過200但不超過400千瓦時,超出第一檔電量的部分,電價標(biāo)準(zhǔn)比第一檔電價提高0.1元/千瓦時;
第三檔電量:用電量超過400千瓦時,超出第二檔電量的部分,電價標(biāo)準(zhǔn)比第一檔電價提高0.3元/千瓦時.隨機(jī)調(diào)查了該市1000戶居民,獲得了他們某月的用電量數(shù)據(jù),整理得到如表的頻率分布表:
 用電量(千瓦時)[0,100] (100,200](200,300] (300,400] (400,500] 合計
 頻數(shù) 200400 200  b 100 1000
 頻率 0.2 a 0.2 0.1 c 1
(Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出a,b,c的值;
(Ⅱ)從該市調(diào)查的1000戶居民中隨機(jī)抽取一戶居民,求該戶居民用電量不超過300千瓦時的概率;
(Ⅲ)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試估計該市每戶居民該月的平均電費(fèi).

查看答案和解析>>

同步練習(xí)冊答案