5.某市為鼓勵居民節(jié)約用電,將實行階梯電價,該市每戶居民每月用電量劃分為三檔,電價實行分檔遞增.
第一檔電量:用電量不超過200千瓦時,電價標(biāo)準(zhǔn)為0.5元/千瓦時;
第二檔電量:用電量超過200但不超過400千瓦時,超出第一檔電量的部分,電價標(biāo)準(zhǔn)比第一檔電價提高0.1元/千瓦時;
第三檔電量:用電量超過400千瓦時,超出第二檔電量的部分,電價標(biāo)準(zhǔn)比第一檔電價提高0.3元/千瓦時.隨機(jī)調(diào)查了該市1000戶居民,獲得了他們某月的用電量數(shù)據(jù),整理得到如表的頻率分布表:
 用電量(千瓦時)[0,100] (100,200](200,300] (300,400] (400,500] 合計
 頻數(shù) 200400 200  b 100 1000
 頻率 0.2 a 0.2 0.1 c 1
(Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出a,b,c的值;
(Ⅱ)從該市調(diào)查的1000戶居民中隨機(jī)抽取一戶居民,求該戶居民用電量不超過300千瓦時的概率;
(Ⅲ)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,試估計該市每戶居民該月的平均電費(fèi).

分析 (Ⅰ)利用調(diào)查的1000戶居民,求出b,利用頻數(shù)與總數(shù)的比值直接求解a,c的值;
(Ⅱ)從該市調(diào)查的1000戶居民中隨機(jī)抽取一戶居民,用電量不超過300千瓦時的有200+400+200=800戶,然后求解該戶居民用電量不超過300千瓦時的概率;
(Ⅲ)同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,然后求解該市每戶居民該月的平均電費(fèi).

解答 (本小題滿分13分)
解:(Ⅰ)a=0.4,b=100,c=0.1.…(3分)
(Ⅱ)設(shè)“該戶居民月用電量不超過300千瓦時”為事件A.…(4分)
由表可知:共調(diào)查了1000戶居民,用電量不超過300千瓦時的有200+400+200=800戶,用電量超過300千瓦時的有100+100=200戶,
所以該居民月用電量不超過300千瓦時的概率$P(A)=\frac{800}{1000}=\frac{4}{5}$.…(8分)
(Ⅲ)由用電量的頻率分布表和題意,得居民該月用電費(fèi)用的數(shù)據(jù)分組與頻率分布表:

用電量(千瓦時)[0,100](100,200](200,300](300,400](400,500]
用電費(fèi)用[0,50](50,100](100,160](160,220](220,300]
 頻率0.20.40.20.10.1
根據(jù)題意,該市每戶居民該月的平均電費(fèi)為:25×0.2+75×0.4+130×0.2+190×0.1+260×0.1=106(元)…(13分)

點評 本題考查頻率分布直方圖的應(yīng)用,概率的求法,考查計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知等差數(shù)列{an}中,a1=1,a5=-3;
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前n項和Sn=-44,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.2016年里約奧運(yùn)會在巴西里約舉行,為了接待來自國內(nèi)外的各界人士,需招募一批志愿者,要求志愿者不僅要有一定的氣質(zhì),還需有豐富的人文、地理、歷史等文化知識.志愿者的選拔分面試和知識問答兩場,先是面試,面試通過后每人積60分,然后進(jìn)入知識問答.知識問答有A,B,C,D四個題目,答題者必須按A,B,C,D順序依次進(jìn)行,答對A,B,C,D四題分別得20分、20分、40分、60分,每答錯一道題扣20分,總得分在面試60分的基礎(chǔ)上加或減.答題時每人總分達(dá)到100分或100分以上,直接錄用不再繼續(xù)答題;當(dāng)四道題答完總分不足100分時不予錄用. 假設(shè)志愿者甲面試已通過且第二輪對A,B,C,D四個題回答正確的概率依次是$\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且各題回答正確與否相互之間沒有影響.
(Ⅰ) 用X表示志愿者甲在知識問答結(jié)束時答題的個數(shù),求X的分布列和數(shù)學(xué)期 望;
(Ⅱ)求志愿者甲能被錄用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從全班36名女同學(xué),24名男同學(xué)中隨機(jī)抽取一個容量為5的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,可以得到多少個不同的樣本?(只要求寫出計算式即可)
(2)隨機(jī)抽取5位,他們的數(shù)學(xué)分?jǐn)?shù)從小到大排序是:89,91,93,95,97,物理分?jǐn)?shù)從小到大排序是:87,89,89,92,93
①若規(guī)定90分以上為優(yōu)秀,求這5位同學(xué)中恰有2位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;②若這5位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)事實上對應(yīng)如表:
學(xué)生編號12345
數(shù)學(xué)分?jǐn)?shù)x8991939597
物理分?jǐn)?shù)y8789899293
根據(jù)上表數(shù)據(jù),用變量y與x的相關(guān)系數(shù)或散點圖說明物理成績y與數(shù)學(xué)成績x之間線性相關(guān)關(guān)系的強(qiáng)弱.如果具有較強(qiáng)的線性相關(guān)關(guān)系,求y與x的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)性,請說明理由.
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$;回歸直線的方程是:$\stackrel{∧}{y}$=bx+a,其中對應(yīng)的回歸估計值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\stackrel{∧}{{y}_{i}}$是與xi對應(yīng)的回歸估計值.
參考值:$\sqrt{15}$≈3.9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為28π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.高考數(shù)學(xué)試題中共有10道選擇題,每道選擇題都有4個選項,其中有且僅有一個是正確的.評分標(biāo)準(zhǔn)規(guī)定:“每題只選1項,答對得5分,不答或答錯得0分.”某考生每道題都給出了一個答案,已確定有6道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只能亂猜,試求出該考生:
(Ⅰ)得50分的概率;
(Ⅱ)得多少分的可能性最大;
(Ⅲ)所得分?jǐn)?shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ex-ax,x∈R.
(1)當(dāng)a=2時,求曲線f(x)在點(0,f(0))處的切線方程;
(2)在(1)的條件下,求證:f(x)>0;
(3)求證:lnx<x;
(4)a>1時,求函數(shù)f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某算法的程序框圖如圖所示.如果從集合{x|-5≤x≤5,x∈Z}中任取一個數(shù)作為x值輸入,則輸出的y值大于或等于3的概率為( 。
A.$\frac{3}{10}$B.$\frac{3}{11}$C.$\frac{7}{10}$D.$\frac{7}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(I)已知函數(shù)$f(x)=\frac{1}{{{{(1+x)}^2}}}+\frac{1}{{{{(1-x)}^2}}}$(0≤x<1),求y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若0<α<β<1,0≤x<1,求證:(1+x)α-2+(1-x)α-2≥(1+x)β-2+(1-x)β-2

查看答案和解析>>

同步練習(xí)冊答案