5.觀察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由此可歸納出:若函數(shù)f(x)是定義在R上的偶函數(shù),則f′(x)( 。
A.為偶函數(shù)B.為奇函數(shù)
C.既為奇函數(shù)又為偶函數(shù)D.為非奇非偶函數(shù)

分析 由已知中(x2)'=2x,(x4)'=4x3,(cosx)'=-sinx,…分析其規(guī)律,我們可以歸納推斷出,偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù).

解答 解:由(x2)'=2x中,原函數(shù)為偶函數(shù),導(dǎo)函數(shù)為奇函數(shù);
(x4)'=4x3中,原函數(shù)為偶函數(shù),導(dǎo)函數(shù)為奇函數(shù);
(cosx)'=-sinx中,原函數(shù)為偶函數(shù),導(dǎo)函數(shù)為奇函數(shù);

我們可以推斷,偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù).
故選:B.

點(diǎn)評 本題考查的知識點(diǎn)是歸納推理,及函數(shù)奇偶性的性質(zhì),其中根據(jù)已知中原函數(shù)與導(dǎo)函數(shù)奇偶性的關(guān)系,得到結(jié)論是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex
(Ⅰ)求函數(shù)g(x)=sinx•f(x)在(0,π)上的單調(diào)區(qū)間;
(Ⅱ)求證:$\frac{f(a)-f(b)}{a-b}$<$\frac{f(a)+f(b)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某零售店近五個月的銷售額和利潤額資料如下表:
商店名稱ABCDE
銷售額x/千萬35679
利潤額y/百萬元23345
(1)求利潤額y關(guān)于銷售額x的線性回歸方程.
(2)當(dāng)銷售額為4(千萬元)時,利用(2)的結(jié)論估計(jì)該零售店的利潤額(百萬元).
(附:在線性回歸方程$\widehat{y}$=$\widehat$x$+\widehat{a}$中,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$$-\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知下列三個等式:
①cos(-420°)=-$\frac{1}{2}$;
②sin3(-α)cos(2π+α)tan(-α-π)=sin4α;
③$\frac{cos(α-\frac{π}{2})}{sin(\frac{5π}{2}+α)}$=$\frac{1}{tanα}$.
其中正確的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.分別拋擲兩枚質(zhì)地均勻的硬幣,設(shè)“第1枚為正面”為事件A,“第2枚為正面”為事件B,“2枚結(jié)果相同”為事件C,則A,B,C中相互獨(dú)立的有(  )
A.0對B.1對C.2對D.3對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前項(xiàng)和為Sn.若a1=1,an=3Sn-1+4(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log2$\frac{{a}_{n+2}}{7}$,cn=$\frac{_{n}}{{2}^{n+1}}$,其中n∈N+,記數(shù)列{cn}的前項(xiàng)和為Tn.求Tn+$\frac{n+2}{{2}^{n}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在銳角△ABC中,a、b分別是角A、B的對邊,若2bsinA=a,則角B等于(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a8a13+a9a12=26,則log2a1+log2a2+…+log2a20=( 。
A.120B.100C.50D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下三個式子的值都等于同一個常數(shù).
①sin210°+cos220°-sin10°cos20°;
②sin215°+cos215°-sin15°cos15°;
③sin216°+cos214°-sin16°cos14°;
請將該同學(xué)的發(fā)現(xiàn)推廣為一般規(guī)律的等式為${sin^2}α+{cos^2}(30°-α)-sinαcos(30°-α)=\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案