5.執(zhí)行如圖所示的程序框圖,如果輸入m=1,n=1,則輸出的m的值為( 。 
A.8B.9C.10D.11

分析 根據(jù)題意,模擬程序框圖的運(yùn)行過程,即可得出該程序輸出的結(jié)果.

解答 解:模擬執(zhí)行程序,可得:
m=1,n=1
不滿足條件m≥8,執(zhí)行循環(huán)體,m=3
不滿足條件m≥8,執(zhí)行循環(huán)體,m=5
不滿足條件m≥8,執(zhí)行循環(huán)體,m=7
不滿足條件m≥8,執(zhí)行循環(huán)體,m=9
滿足條件m≥8,退出循環(huán),輸出m的值為9.
故選:B.

點(diǎn)評 本題考查了程序框圖的應(yīng)用問題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過程,從而得出正確的結(jié)論,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,a=f(-2),b=f(2),c=f(log212),則( 。
A.c<b<aB.a<c<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=sin(2ωx+φ)(ω>0,0<φ<π)的最小正周期為π,且函數(shù)圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對稱,則函數(shù)的解析式為(  )
A.y=sin(4x+$\frac{π}{3}$)B.y=sin(2x+$\frac{2π}{3}$)C.y=sin(2x+$\frac{π}{3}$)D.y=sin(4x+$\frac{2π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個(gè)三棱錐的三視圖如圖所示,則該三棱錐的外接球表面積為( 。
A.$\frac{13}{3}$πB.13πC.$\frac{52π}{3}$D.52π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從1,3,5,7中任取2個(gè)數(shù)字,從0,2,4,6,8中任取2個(gè)數(shù)字,組成沒有重復(fù)數(shù)字的四位數(shù),其中能被5整除的四位數(shù)共有( 。﹤(gè).
A.192B.228C.300D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在底面半徑為2、母線長為4的圓錐中挖去一個(gè)高為$\sqrt{3}$的內(nèi)接圓柱;
(1)求圓柱的表面積;
(2)求圓錐挖去圓柱剩下幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=cos2x-sin2x+2sinxcosx(x∈R)的最小正周期為π,單調(diào)遞減區(qū)間為$[kπ+\frac{π}{8},kπ+\frac{5π}{8}](k∈Z)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=x4+x-1,則f′(1)+f′(-1)等于( 。
A.-2B.-4C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某單位為了了解辦公樓的用電量y(度)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了四個(gè)工作日的用電量與當(dāng)天平均氣溫如表:
氣溫(℃)181310-1
用電量(度)24343864
(1)由表中數(shù)據(jù)求y與x的線性回歸方程(系數(shù)$\stackrel{∧}$取整數(shù));
(2)求貢獻(xiàn)率R2的值(保留小數(shù)點(diǎn)后兩位),并做出解釋.
附計(jì)算公式:$\widehat$$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\overline{y}$=$\widehat$$\overline{x}$+$\widehat{a}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\widehat{y})^{2}}$.

查看答案和解析>>

同步練習(xí)冊答案