14.設(shè)函數(shù)f(x)=x4+x-1,則f′(1)+f′(-1)等于( 。
A.-2B.-4C.4D.2

分析 求函數(shù)的導數(shù),利用代入法直接求解即可.

解答 解:函數(shù)的導數(shù)f′(x)=4x3+1,
則f′(1)+f′(-1)=4+1-4+1=2,
故選:D.

點評 本題主要考查函數(shù)的導數(shù)的計算,直接求函數(shù)的導數(shù)是解決本題的關(guān)鍵.比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.在等差數(shù)列{an}中,若a2=6,a5=12,則公差d=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,如果輸入m=1,n=1,則輸出的m的值為( 。 
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{2x-a,x≥1}\\{{e^x},x≤-1}\end{array}}$的圖象上存在關(guān)于y軸的對稱點,則a的取值范圍是(  )
A.(-∞,$\frac{1}{e}$-1)B.(-∞,2-$\frac{1}{e}$)C.[$\frac{1}{e}$-1,+∞)D.[2-$\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.(2x+$\frac{1}{x}$)n的二項式系數(shù)的和是32,則該二項展開式中x3的系數(shù)是80(用數(shù)字填寫答案).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=ex+x2-x在區(qū)間[-1,1]上的值域為[1,e].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)拋物線y2=2px(p>0)的焦點為F、準線為l,過拋物線上一點A作l的垂線,垂足為B,設(shè)C($\frac{5}{2}$p,0),AF與BC相交于點E,若|CF|=2|AF|,且△ACE的面積為3,則p的值是(  )
A.3B.3$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.一個多面體的直觀圖、三視圖如圖所示,則該多面體的表面積為( 。
A.3a2B.5a2C.$\frac{9}{2}$a2D.$\frac{11}{2}$a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2cos2x+m(0≤x≤$\frac{π}{2}$).
(1)若函數(shù)f(x)的最大值為6,求常數(shù)m的值;
(2)若函數(shù)f(x)有兩個零點x1和x2,求m的取值范圍,并求x1和x2的值;
(3)在(1)的條件下,若g(x)=(t-1)f(x)-$\frac{3sinx-\sqrt{3}cosx}{\sqrt{3}cosx+sinx}$(t≥2),討論函數(shù)g(x)的零點個數(shù).

查看答案和解析>>

同步練習冊答案