分析 根據(jù)二倍角公式、兩角和的正弦公式化簡(jiǎn)解析式,由周期公式求出函數(shù)的最小正周期;由正弦函數(shù)的減區(qū)間、整體思想求出f(x)的單調(diào)遞減區(qū)間.
解答 解:由題意得,f(x)=cos2x-sin2x+2sinxcosx
=cos2x+sin2x=$\sqrt{2}sin(2x+\frac{π}{4})$,
∴最小正周期T=$\frac{2π}{ω}$=π,
由$2kπ+\frac{π}{2}≤2x+\frac{π}{4}≤2kπ+\frac{3π}{2}(k∈Z)$ 得,
$kπ+\frac{π}{8}≤x≤kπ+\frac{5π}{8}(k∈Z)$,
∴函數(shù)f(x)的單調(diào)遞減區(qū)間是$[kπ+\frac{π}{8},kπ+\frac{5π}{8}](k∈Z)$,
故答案為:π;$[kπ+\frac{π}{8},kπ+\frac{5π}{8}](k∈Z)$.
點(diǎn)評(píng) 本題考查正弦函數(shù)的單調(diào)性,三角函數(shù)的周期公式,以及二倍角公式、兩角和的正弦公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 80+10π | B. | 80+20π | C. | 92+14π | D. | 120+10π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,$\frac{1}{e}$-1) | B. | (-∞,2-$\frac{1}{e}$) | C. | [$\frac{1}{e}$-1,+∞) | D. | [2-$\frac{1}{e}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 3$\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
家庭編號(hào) | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,0,1) | (1,2,1) | (1,2,2) | (1,1,1) | (1,2,2) | (1,2,1) | (1,1,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com