1.已知命題“p且q”是真命題,則下列命題:①p或q;②p且¬q;③¬p或q;④¬p且q;其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

分析 由已知可得命題p,q均為真命題,由復(fù)合命題真假判斷的真值表逐一分析各個(gè)結(jié)論的真假,可得答案.

解答 解:∵命題“p且q”是真命題,
∴命題p,q均為真命題,
故:①p或q為真命題;
②p且¬q為假命題;
③¬p或q為真命題;
④¬p且q為假命題;
故選:B

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是命題的真假判斷與應(yīng)用,復(fù)合命題,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知球面上的四點(diǎn)P、A、B、C,PA、PB、PC的長(zhǎng)分別為3、4、5,且這三條線段兩兩垂直,則這個(gè)球的體積為( 。
A.$\frac{{1000\sqrt{2}}}{3}π$B.$\frac{{375\sqrt{2}}}{16}π$C.50πD.$\frac{{125\sqrt{2}}}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知x,y滿足$\left\{\begin{array}{l}x-4y+3≤0\\ 3x+5y≤25\\ x≥1\end{array}\right.$,則z=2x-y的最小值為$-\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若實(shí)數(shù)a,b滿足$\frac{1}{a}+\frac{2}=2\sqrt{ab}$,則ab的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=3,S6=15,則a10+a11+a12=( 。
A.21B.30C.12D.39

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)A={x|x2+ax+a=0},其中a為常數(shù).
(1)若a=1,求A;
(2)a>0是A=∅的充分條件還是必要條件?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在平面直角坐標(biāo)系xOy中,以點(diǎn)(1,1)為圓心且與直線mx-y-2m-1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-1)2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S5-S4=3,則S9=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知f(x)=f'(1)+xlnx,則f(e)=( 。
A.1+eB.eC.2+eD.3

查看答案和解析>>

同步練習(xí)冊(cè)答案