9.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,將函數(shù)f(x)的圖象向左平移m(m>0)個單位后,得到的圖象關(guān)于點($\frac{π}{6}$,-1)對稱,則m的最小值是( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5}{6}$πD.$\frac{2π}{3}$

分析 由周期求出ω,由最值以及特殊點求A、B,由五點法作圖求出φ的值,可得f(x)的解析式;利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,求得m的最小值.

解答 解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象,
可得y軸右側(cè)第一條對稱軸為x=$\frac{-\frac{π}{12}+\frac{π}{4}}{2}$=$\frac{π}{12}$,故$\frac{T}{2}$=$\frac{7π}{12}$-$\frac{π}{12}$,∴ω=2.
∵x=$\frac{7π}{12}$時函數(shù)取得最小值,故有2•$\frac{7π}{12}$+φ=$\frac{3π}{2}$,∴φ=$\frac{π}{3}$.
再根據(jù)B-A=-3,且Asin(2•$\frac{π}{4}$+$\frac{π}{3}$)+B=$\frac{A}{2}$+B=0,∴A=2,B=-1,即f(x)=2sin(2x+$\frac{π}{3}$)-1.
將函數(shù)f(x)的圖象向左平移m(m>0)個單位后,得到y(tǒng)=g(x)=2sin(2x+2m+$\frac{π}{3}$)-1的圖象,
根據(jù)得到的函數(shù)g(x)圖象關(guān)于點($\frac{π}{6}$,-1)對稱,可得2•$\frac{π}{6}$+2m+$\frac{π}{3}$=kπ,k∈Z,
∴m=$\frac{kπ}{2}$-$\frac{π}{3}$,則m的最小值是$\frac{π}{6}$,
故選:A.

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由最值以及特殊點求A、B,由五點法作圖求出φ的值,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)Sn是等差數(shù)列{an}的前n項和,且a11=S13=13,則a9=( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列命題中正確的是( 。
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2-4x-5=0”的充分不必要條件
C.命題“若x<-1,則x2-2x-3>0”的否命題為:“若x<-1,則x2-2x-3≤0”
D.已知命題p:?x∈R,x2+x-1<0,則¬p:?x∈R,x2+x-1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+ax-x2(0<a≤1)
(I)$a=\frac{1}{2}$時,求f(x)的圖象在點(1,f(1))處的切線的方程
(II)設(shè)函數(shù)f(x)單調(diào)遞增區(qū)間為(s,t)(s<t),求t-s的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,E,F(xiàn),H分別是棱PA,PB,AD的中點,且過E,F(xiàn),H的平面截四棱錐P-ABCD所得截面面積為$\frac{{3\sqrt{2}}}{2}$,則四棱錐P-ABCD的體積為( 。
A.$\frac{8}{3}$B.8C.$8\sqrt{3}$D.$24\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)為區(qū)間D上的凸函數(shù),則對于D上的任意n個值x1、x2、…、xn,總有f(x1)+f(x2)+…+f(xn)≤nf($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$),現(xiàn)已知函數(shù)f(x)=sinx在[0,$\frac{π}{2}$]上是凸函數(shù),則在銳角△ABC中,sinA+sinB+sinC的最大值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的漸近線方程為y=±$\frac{\sqrt{2}}{2}$x,則該曲線的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若(1+2x)(1-2x)7=a0+a1x+a2x2+…+a8x8,則a0+a1+a2+…+a7的值為( 。
A.-2B.-3C.253D.126

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“2x>1”是“x>1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案