分析 確定集合A的元素范圍,根據(jù)A∩B=A,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.
解答 解:由題意:集合A={x||2x-1|≤3}={x|-1≤x≤2}
集合B={x|x2+(4-a)x-4a>0}={x|(x+4)(x-a)>0},
∵A∩B=A
∴A⊆B.
解法一:
令f(x)=x2+(4-a)x-4a>0,
∵-1≤x≤2,
根據(jù)一元二次方程的根的分布:
可得:$\left\{\begin{array}{l}{-\frac{2a}≤-1}\\{f(-1)≥0}\end{array}\right.$或$\left\{\begin{array}{l}{-\frac{2a}≥2}\\{f(2)≥0}\end{array}\right.$
解:a≤-1
故得實(shí)數(shù)a的取值范圍是:(-∞,-1].
解法二,討論思想:
當(dāng)a=-4時(shí),B={x∈R|x≠-4},滿足A⊆B.
當(dāng)a>-4時(shí),B={x|x>a或x<-4},
要使A⊆B成立,則:a≤-1.
當(dāng)a<-4時(shí),B={x|x<a或x>-4},滿足A⊆B.
故得實(shí)數(shù)a的取值范圍是:(-∞,-1].
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是集合的包含關(guān)系判斷及應(yīng)用,集合關(guān)系中的參數(shù)問(wèn)題,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,4] | B. | [0,4] | C. | [0,1] | D. | (0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 種 | B. | 4 種 | C. | 5 種 | D. | 6 種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$(2n-1) | B. | $\frac{1}{24}$(2n+4) | C. | $\frac{1}{24}$(4n-1) | D. | $\frac{1}{16}$(4n-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,3] | B. | (0,3] | C. | (-∞,3] | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com