13.已知函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x≤1\\-x,x<-1或x>1\end{array}$,且函數(shù)g(x)=f(x)-kx+2k有三個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.$-\frac{{\sqrt{3}}}{3}≤k≤0$B.$k≤-\frac{{\sqrt{3}}}{3}$或$k=-\frac{1}{3}$C.$-\frac{{\sqrt{3}}}{3}<K<-\frac{1}{3}$D.$-\frac{{\sqrt{3}}}{3}≤k≤-\frac{1}{3}$或k=0

分析 在同一坐標(biāo)系中畫出函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x≤1\\-x,x<-1或x>1\end{array}$的圖象與y=kx-2k的圖象,數(shù)形結(jié)合,可得答案.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x≤1\\-x,x<-1或x>1\end{array}$的圖象如下圖所示:

若函數(shù)g(x)=f(x)-kx+2k有三個(gè)不同的零點(diǎn),
則函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x≤1\\-x,x<-1或x>1\end{array}$的圖象與y=kx-2k的圖象有三個(gè)交點(diǎn),
當(dāng)y=kx-2k過(guò)(-1,1),即k=-$\frac{1}{3}$時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),
當(dāng)y=kx-2k與半圓相切,即k=-$\frac{\sqrt{3}}{3}$時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),
故$-\frac{{\sqrt{3}}}{3}<K<-\frac{1}{3}$,
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的零點(diǎn)與方程的根,數(shù)形結(jié)合思想,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.圓O為△ABC的外接圓,半徑為2,若$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,且|$\overrightarrow{OA}$=|$\overrightarrow{AC}$|,則$\overrightarrow{BA}•\overrightarrow{BO}$=6|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過(guò)點(diǎn)($\sqrt{2}$,1),且以橢圓短軸的兩個(gè)端點(diǎn)和一個(gè)焦點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)M(x,y)是橢圓C上的動(dòng)點(diǎn),P(p,0)是x軸上的定點(diǎn),求|MP|的最小值及取最小值時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.過(guò)點(diǎn)P(2,1)作直線l分別與x,y軸正半軸交于A、B兩點(diǎn).
(1)當(dāng)△AOB面積最小時(shí),求直線l的方程;
(2)當(dāng)|OA|+|OB|取最小值時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).
(1)證明{an+an-1}與{an-3an-1}分別都是等比數(shù)列并求出數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,若sinAcosB=sinC,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知冪函數(shù)f(x)的圖象過(guò)(-$\sqrt{2}$,2),一次函數(shù)g(x)的圖象過(guò)A(-1,1),B(3,9).
(Ⅰ)求函數(shù)f(x)和g(x)的解析式;
(Ⅱ)當(dāng)x為何值時(shí),①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=alnx+bx(a,b∈R)在點(diǎn)(1,f(1))處的切線方程為x-2y-2=0.
(1)求a、b的值;
(2)當(dāng)x≥1時(shí),f(x)+$\frac{k}{x}$<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=alnx-ax-3(a≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)+(a+1)x+4-e≤0對(duì)任意x∈[e,e2]恒成立,求實(shí)數(shù)a的取值范圍(e為自然常數(shù));
(3)求證:ln($\frac{1}{2^2}$+1)+ln($\frac{1}{3^2}$+1)+ln($\frac{1}{4^2}$+1)+…+ln($\frac{1}{n^2}$+1)<1(n≥2,n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案