5.已知冪函數(shù)f(x)的圖象過(-$\sqrt{2}$,2),一次函數(shù)g(x)的圖象過A(-1,1),B(3,9).
(Ⅰ)求函數(shù)f(x)和g(x)的解析式;
(Ⅱ)當(dāng)x為何值時,①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).

分析 (Ⅰ)設(shè)出函數(shù)的解析式,代入法求出f(x)的解析式,設(shè)出g(x)的解析式,待定系數(shù)法求出g(x)的解析式即可;
(Ⅱ)分別令f(x)=g(x),f(x)>g(x),f(x)<g(x),求出x的值或范圍即可.

解答 解:(Ⅰ)設(shè)f(x)=xα,把$(-\sqrt{2},\;2)$帶入,得α=2,所以f(x)=x2;
設(shè)g(x)=kx+b,把A(-1,1),B(3,9)帶入,得$\left\{{\begin{array}{l}{k=2}\\{b=3}\end{array}}\right.$,所以g(x)=2x+3.
(Ⅱ)令f(x)=g(x),即x2=2x+3,解得x=-1,或x=3;
①當(dāng)x<-1,或x>3時,f(x)>g(x),②當(dāng)x=-1,或x=3時,f(x)=g(x);
③當(dāng)-1<x<3時,f(x)<g(x).

點評 本題考查了求函數(shù)的解析式問題,考查解不等式以及方程問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個長軸頂點分別為A、B,M為橢圓上一點(異于A、B),則有結(jié)論:KMA•KMB=-$\frac{^{2}}{{a}^{2}}$,現(xiàn)在有雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上的點A(-3,0).點B(3,0).P為雙曲線一點(P不在x軸上)那么KPA•KPB=
A.$\frac{16}{9}$B.$\frac{9}{16}$C.-$\frac{16}{9}$D.-$\frac{9}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知點P為圓x2+y2=25上任意一點,過P作x軸的垂線,垂足為H,且滿足$\overrightarrow{MH}$=$\frac{3}{5}\overrightarrow{PH}$,若M的軌跡為曲線E.
(1)求h(x)=f(x)-g(x)的方程;
(2)設(shè)過曲線E左焦點的兩條弦為MN、PQ,弦MN,PQ所在直線的斜率分別為k1、k2,當(dāng)k1k2=1時,判斷$\frac{1}{|MN|}$+$\frac{1}{|PQ|}$是否為定值,若是,求出該定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x≤1\\-x,x<-1或x>1\end{array}$,且函數(shù)g(x)=f(x)-kx+2k有三個不同的零點,則實數(shù)k的取值范圍是( 。
A.$-\frac{{\sqrt{3}}}{3}≤k≤0$B.$k≤-\frac{{\sqrt{3}}}{3}$或$k=-\frac{1}{3}$C.$-\frac{{\sqrt{3}}}{3}<K<-\frac{1}{3}$D.$-\frac{{\sqrt{3}}}{3}≤k≤-\frac{1}{3}$或k=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)  f(x)=$\left\{\begin{array}{l}{3x-1,x<1}\\{{2}^{x},x≥1}\end{array}\right.$   則f(f($\frac{2}{3}$))=(  )
A.3B.2C.5D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中對應(yīng)的元素是(  )
A.2B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)集合M={(x,y)|3x-4y=$\frac{1}{27}$,x,y∈R},N={(x,y)|log${\;}_{\sqrt{3}}}$(x-y)=2,x,y∈R},則M∩N={(5,2)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.集合{0,1}的真子集有( 。
A.2個B.3個C.4個D.8個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.定義:若函數(shù)f(x)對于其定義域內(nèi)的某一數(shù)x0,有f(x0)=x0,則稱x0是f(x)的一個不動點.已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=3時,求函數(shù)f(x)的不動點;
(2)若對任意的實數(shù)b,函數(shù)f(x)恒有兩個不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上兩個點A、B的橫坐標(biāo)是函數(shù)f(x)的不動點,且A、B的中點C在函數(shù)g(x)=-x+$\frac{2a}{5{a}^{2}-4a+1}$的圖象上,求b的最小值.(參考公式:A(x1,y1),B(x2,y2)的中點坐標(biāo)為($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$))

查看答案和解析>>

同步練習(xí)冊答案