11.若函數(shù)y=x2-mx+1在區(qū)間[1,2]上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,2]B.(-∞,2)C.(4,+∞)D.[4,+∞)

分析 先求出函數(shù)的對稱軸,結(jié)合函數(shù)的單調(diào)性,得到不等式解出即可.

解答 解:函數(shù)y=x2-mx+1對稱軸為:x=$\frac{m}{2}$
又∵在區(qū)間[1,2]上單調(diào)遞增
∴$\frac{m}{2}$≤1,
即m≤2
故選:A

點(diǎn)評 本題主要考查二次函數(shù)的性質(zhì),涉及了二次函數(shù)的對稱性和單調(diào)性,在研究二次函數(shù)單調(diào)性時,一定要明確開口方向和對稱軸.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知命題p:方程x2-2x+m=0有兩個不相等的實(shí)數(shù)根;命題q:對任意x∈[0,8],不等式log${\;}_{\frac{1}{3}}$(x+1)≥m2-3m恒成立.若“p或q”是真命題,“p且q”是假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,sinx>cosx}\\{cosx,sinx≤cosx}\end{array}\right.$,關(guān)于f(x)的敘述
①最小正周期為2π
②有最大值1和最小值-1
③對稱軸為直線$x=kπ+\frac{π}{4}({k∈Z})$
④對稱中心為$({kπ+\frac{π}{4},0})(k∈Z)$
⑤在$[{\frac{π}{2},π}]$上單調(diào)遞減
其中正確的命題序號是①③⑤.(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)a=log${\;}_{\frac{2}{3}}$$\frac{3}{2}$,b=log32,c=2${\;}^{\frac{1}{3}}$,d=3${\;}^{\frac{1}{2}}$,則這四個數(shù)的大小關(guān)系是(  )
A.a<b<c<dB.a<c<d<bC.b<a<c<dD.b<a<d<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.中央電視臺第一套節(jié)目午間新聞的播出時間是每天中午12:00到12:30,在某星期天中午的午間新聞中將隨機(jī)安排播出時長5分鐘的有關(guān)電信詐騙的新聞報道.若小張于當(dāng)天12:20打開電視,則他能收看到這條新聞的完整報道的概率是(  )
A.$\frac{2}{5}$B.$\frac{1}{3}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow m=(1\;,\;\;1)$,向量$\overrightarrow n$與向量$\overrightarrow m$夾角為$\frac{3}{4}π$,且$\overrightarrow m•\overrightarrow n=-1$.
(1)求向量$\overrightarrow n$;
(2)若向量$\overrightarrow n$與向量$\overrightarrow q=(1\;,\;\;0)$的夾角為$\frac{π}{2}$,向量$\overrightarrow p=(cosA\;,\;\;2{cos^2}\frac{C}{2})$,其中A、C為△ABC的內(nèi)角,且2B=A+C.求$|\overrightarrow n+\overrightarrow p|$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知sinα=$\frac{1}{3}$,且α為第二象限角,則tan(π-α)=( 。
A.-$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{4}$C.±$\frac{\sqrt{2}}{4}$D.-2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線m,n與平面α、β,給出下列命題:其中正確的是( 。
A.若m∥α,n⊥β且α⊥β,則m∥nB.若m∥α,n⊥α,則m⊥n
C.若m∥α,n∥β且α∥β,則m∥nD.若α⊥β,α∩β=n,n⊥m⇒n⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則$\frac{BD}{DA}$=( 。
A.$\frac{16}{9}$B.$\frac{25}{9}$C.$\frac{25}{16}$D.$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊答案