分析 方法一、運用作差法,化簡整理,即可得到結(jié)論;
方法二、求出二次函數(shù)的對稱軸方程,即可所求結(jié)論.
解答 解法一、函數(shù)f(x)=x2-x+a,
可得f(1-m)-f(m)=(1-m)2-(1-m)+a-(m2-m+a)
=(1-m)(-m)-m(m-1)=m(m-1)-m(m-1)=0,
則f(m)=f(1-m).
解法二、函數(shù)f(x)=x2-x+a的對稱軸為x=$\frac{1}{2}$,
由m+(1-m)=1,
可得f(m)=f(1-m).
故答案為:=.
點評 本題考查二次函數(shù)的性質(zhì)和應(yīng)用,主要是對稱性,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
價 格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
n-2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
小概率0.01 | 1.000 | 0.990 | 0.959 | 0.917 | 0.874 | 0.834 | 0.798 | 0.765 | 0.735 | 0.708 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 506 | B. | 462 | C. | 420 | D. | 380 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,+∞) | C. | (e,+∞) | D. | (0,e) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com