分析 設(shè)公共點(diǎn)(x0,y0),根據(jù)題意得到,f(x0)=g(x0),f′(x0)=g′(x0),解出b關(guān)于a的函數(shù)關(guān)系式,然后利用導(dǎo)數(shù)研究b關(guān)于a的函數(shù)的單調(diào)性,從而求出b的最大值.
解答 解:(I)設(shè)y=f(x)與y=g(x)(x>0)在公共點(diǎn)(x0,y0)處的切線相同.
f′(x)=x+2a,g′(x)=$\frac{3{a}^{2}}{x}$.
由題意知f(x0)=g(x0),f′(x0)=g′(x0)
即$\left\{\begin{array}{l}{\frac{1}{2}{{x}_{0}}^{2}+2a{x}_{0}=3{a}^{2}ln{x}_{0}+b}\\{{x}_{0}+2a=\frac{3{a}^{2}}{{x}_{0}}}\end{array}\right.$,
解得x0=a或x0=-3a(舍去),
b(a)=$\frac{5{a}^{2}}{2}$-3a2lna(a>0)
b'(a)=5a-6alna-3a=2a(1-3lna)
b'(a)>0?$\left\{\begin{array}{l}{a>0}\\{1-3lna>0}\end{array}\right.$?0<a<${e}^{\frac{1}{3}}$
b'(a)<0?$\left\{\begin{array}{l}{a>0}\\{1-3lna<0}\end{array}\right.$?a>${e}^{\frac{1}{3}}$
可見b(a)max=b(${e}^{\frac{1}{3}}$)=$\frac{3}{2}{e}^{\frac{2}{3}}$.
故答案為:$\frac{3}{2}{e}^{\frac{2}{3}}$.
點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程和恒成立問(wèn)題,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,同時(shí)考查了轉(zhuǎn)化的思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com