11.如表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù)
耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù):
x3456
y2.5344.5
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=bx+a;試根據(jù)(2)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?
(參考數(shù)值3×2.5+4×3+5×4+6×4.5=66.5)
(附:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本均值)

分析 (1)把所給的四對數(shù)據(jù)寫成對應的點的坐標,在坐標系中描出來,得到散點圖.
(2)根據(jù)所給的這組數(shù)據(jù)求出利用最小二乘法所需要的幾個數(shù)據(jù),代入求系數(shù)b的公式,求得結(jié)果,再把樣本中心點代入,求出a的值,得到線性回歸方程;根據(jù)上一問所求的線性回歸方程,把x=100代入線性回歸方程,即可估計生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗.

解答 解:(1)由題設所給數(shù)據(jù),可得散點圖如圖所示:
.…(4分)
(2)由對照數(shù)據(jù),計算得:$\sum_{i=1}^{4}$${{x}_{i}}^{2}$=86,
=43+4+5+6=4.5(噸),
=42.5+3+4+4.5=3.5(噸).
已知$\sum_{i=1}^{4}$xiyi=66.5,所以,由最小二乘法確定的回歸方程的系數(shù)為:
$\widehat$=$\frac{{{\sum_{i=1}^{4}x}_{i}y}_{i}-4\overline{x}•\overline{y}}{{{\sum_{i=1}^{4}x}_{i}}^{2}-{4\overline{x}}^{2}}$=86-4×4.5266.5-4×4.5×3.5=0.7,
$\widehat{a}$=-$\widehat$=3.5-0.7×4.5=0.35.
因此,所求的線性回歸方程為$\widehat{y}$=0.7x+0.35.…(9分)
由(2)的回歸方程及技改前生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗,得降低的生產(chǎn)能耗為:
90-(0.7×100+0.35)=19.65(噸標準煤).…(12分)

點評 本題考查線性回歸方程,兩個變量之間的關(guān)系,除了函數(shù)關(guān)系,還存在相關(guān)關(guān)系,通過建立回歸直線方程,就可以根據(jù)其部分觀測值,獲得對這兩個變量之間整體關(guān)系的了解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知點F1、F2分別是雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點,過F1的直線l與雙曲線C的左、右兩支分別交于A、B兩點,若|AB|:|BF2|:|AF2|=3:4:5,則雙曲線的離心率為( 。
A.2B.4C.$\sqrt{13}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,且過點(1,$\frac{\sqrt{6}}{3}$).
(1)求橢圓C的方程;
(2)設與圓O:x2+y2=$\frac{3}{4}$相切的直線l交橢圓C于A,B兩點,求△OAB面積的最大值,及取得最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知橢圓的焦點坐標為F1(-1,0),F(xiàn)2(1,0),過F2作垂直于長軸的直線交橢圓于A、B兩點,且|AB|=3.
(1)求橢圓的方程;
(2)過F1點作相互垂直的直線l1,l2,其中l(wèi)1交橢圓于P1,P2,l2交橢圓于P3,P4,求證$\frac{1}{|P{{\;}_{1}P}_{2}|}$+$\frac{1}{|{P}_{3}{P}_{4}|}$是否為定值?并求當四邊形P1P2P3P4面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓E:$\frac{{x}^{2}}{2}$+y2=1,過點P(-2,0)的直線l交E于A,B兩點,且$\overrightarrow{PB}=λ\overrightarrow{PA}$(λ>1).點C與點B關(guān)于x軸對稱.
(1)求證:直線AC過定點Q,并求該定點;
(2)在(1)的條形下,求△QAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知$\overrightarrow{a}$=(-$\frac{7\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow$=($\sqrt{2}$,$\sqrt{2}$),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影是( 。
A.-3B.3C.-$\frac{6}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知點P是邊長為2的正三角形ABC的重心,則$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)的值為(  )
A.0B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知命題p:實數(shù)x滿足|2x-m|≥1;命題q:實數(shù)x滿足$\frac{1-3x}{x+2}$>0.
(Ⅰ)若m=1時,p∧q為真,求實數(shù)x的取值范圍;
(Ⅱ)若?p是q的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=4sin22x是(  )
A.周期為$\frac{π}{4}$的偶函數(shù)B.周期為$\frac{π}{4}$的奇函數(shù)
C.當x=$\frac{π}{4}$時,函數(shù)的最大值為4D.當x=$\frac{π}{4}$時,函數(shù)的最小值為2

查看答案和解析>>

同步練習冊答案