14.已知圓C:x2+y2+2x+4y+4=0,直線l:sinθx+cosθy-4=0,則直線,與圓C的位置關(guān)系為相離.

分析 根據(jù)圓的標(biāo)準(zhǔn)方程求出圓心坐標(biāo)和圓半徑,代入點到直線距離公式,與半徑比較后,可得直線與圓的位置關(guān)系.

解答 解:由圓C:x2+y2+2x+4y+4=0的標(biāo)準(zhǔn)方程(x+1)2+(y+2)2=1可得
圓心坐標(biāo)為C(-1,-2),半徑r=1
∴圓心到直線的距離d=|sinθ+cosθ+4|=$\sqrt{5}$sin(θ+α)+4∈[4-$\sqrt{5}$,4+$\sqrt{5}$],
∵r=1,∴相離.
故答案為相離.

點評 本題考查的知識點是直線與圓的位置關(guān)系,點到直線距離公式,圓的標(biāo)準(zhǔn)方程,其中熟練掌握直線與圓位置關(guān)系的判定方法是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\sqrt{2}sin(ωx+\frac{π}{4})(ω>0)$的最小正周期為π,下列四個判斷:
(1)當(dāng)$x∈[0,\frac{π}{2}]$時,f(x)的最小值為-1;
(2)函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{8}$對稱;
(3)函數(shù)f(x)的圖象可由$y=\sqrt{2}cos2x$的圖象向右平移$\frac{π}{4}$個單位長度得到;
(4)函數(shù)f(x)在區(qū)間$[\frac{π}{8},\frac{3π}{8}]$上是減函數(shù).
以上正確判斷的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若直線l經(jīng)過點A(2,5)、B(4,3),則直線l傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)的定義域為R,$f(\frac{1}{2})=2$,且對任意的實數(shù)a,b滿足f(a+b)=f(a)+f(b)-1,當(dāng)$x>-\frac{1}{2}$時,f(x)>0.
(1)求$f(-\frac{1}{2})$的值;
(2)求證:當(dāng)x>0時,f(x)>1;
(3)求證:f(x)在R上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對于定義域和值域都為[0,1]的函數(shù)f(x),設(shè)f1(x)=f(x),${f_2}(x_0)=f({f_1}(x)),…,{f_n}(x)=f({f_{n-1}}(x))\;(n∈{N^*})$,若x0滿足fn(x0)=x0,則x0稱為f(x)的n階周期點.
(1)若f(x)=1-x(0≤x≤1),則f(x)的3價周期點的值為$\frac{1}{2}$;
(2)若$f(x)=\left\{{\begin{array}{l}{2x,x∈[{0,\frac{1}{2}}]}\\{2-2x,x∈({\frac{1}{2},1}]}\end{array}}\right.$,則f(x)的2階周期點的個數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.從某校高三的1000名學(xué)生中用隨機抽樣的方法,得到其中100人的身高數(shù)據(jù)(單位:cm,所得數(shù)據(jù)均在[140,190]上),并制成頻率分布直方圖(如圖所示),由該圖可估計該校高三學(xué)生中身高不低于165cm的人數(shù)約為( 。
A.500B.550C.600D.700

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點A(0,2),B(2,0),設(shè)點C(t,t2),則使得△ABC的面積為2的點C的個數(shù)為( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)=log3(x2+ax+a+5),f(x)在區(qū)間(-∞,1)上是遞減函數(shù),則實數(shù)a的取值范圍為( 。
A.[-3,-2]B.[-3,-2)C.(-∞,-2]D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若同時滿足條件:
①對于任意的實數(shù)x,f(x)和g(x)的函數(shù)值至少有一個小于0;
②在區(qū)間(-∞,-4)內(nèi)存在實數(shù)x,使得f(x)g(x)<0成立;
則實數(shù)m的取值范圍是(-4,-2).

查看答案和解析>>

同步練習(xí)冊答案