分析 由于g(x)=2x-2≥0時(shí),x≥1,根據(jù)題意有f(x)=m(x-2m)(x+m+3)<0在x>1時(shí)成立;由于x∈(-∞,-4),f(x)g(x)<0,而g(x)=2x-2<0,則f(x)=m(x-2m)(x+m+3)>0在x∈(-∞,-4)時(shí)成立.由此結(jié)合二次函數(shù)的性質(zhì)可求出結(jié)果.
解答 解:解:對于①∵g(x)=2x-2,當(dāng)x<1時(shí),g(x)<0,
又∵①?x∈R,f(x)<0或g(x)<0
∴f(x)=m(x-2m)(x+m+3)<0在x≥1時(shí)恒成立
則由二次函數(shù)的性質(zhì)可知開口只能向下,且二次函數(shù)與x軸交點(diǎn)都在(1,0)的左面,
則$\left\{\begin{array}{l}{m<0}\\{-1-m<1}\\{2m<1}\end{array}\right.$,
∴-4<m<0即①成立的范圍為-4<m<0.
又∵②x∈(-∞,-4),f(x)g(x)<0
∴此時(shí)g(x)=2x-2<0恒成立
∴f(x)=m(x-2m)(x+m+3)>0在x∈(-∞,-4)有成立的可能,則只要-4比x1,x2中的較小的根大即可,
(i)當(dāng)-1<m<0時(shí),較小的根為-m-3,-m-3<-4不成立,
(ii)當(dāng)m=-1時(shí),兩個(gè)根同為-2>-4,不成立,
(iii)當(dāng)-4<m<-1時(shí),較小的根為2m,2m<-4即m<-2成立.
綜上可得①②成立時(shí)-4<m<-2.
故答案為:(-4,-2).
點(diǎn)評 本題主要考查了全稱命題與特稱命題的成立,指數(shù)函數(shù)與二次函數(shù)性質(zhì)的應(yīng)用是解答本題的關(guān)鍵,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{3}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com