A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 a2+$\frac{1}{ab}$+$\frac{1}{{a({a-b})}}$=ab+$\frac{1}{ab}$+a2-ab+$\frac{1}{{a({a-b})}}$,利用基本不等式的性質(zhì)即可得出.
解答 解:∵a>b>0,∴a-b>0,
∴a2+$\frac{1}{ab}$+$\frac{1}{{a({a-b})}}$=a2-ab+ab+$\frac{1}{ab}$+$\frac{1}{{a({a-b})}}$=ab+$\frac{1}{ab}$+a(a-b)+$\frac{1}{{a({a-b})}}$≥2$\sqrt{ab•\frac{1}{ab}}$+2$\sqrt{a(a-b)•\frac{1}{a(a-b)}}$=4,
當且僅當ab=1,a(a-b)=1即a=$\sqrt{2}$,b=$\frac{\sqrt{2}}{2}$時等號成立,
故選:D.
點評 本題考查了通過變形利用基本不等式的性質(zhì)的方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{a}<\frac{a+bc}{b+ac}<a$ | B. | $\frac{1}{a}<\frac{a+bc}{b+ac}<b$ | C. | $\frac{1}{c}<\frac{a+bc}{b+ac}<c$ | D. | $\frac{1}{{\sqrt{ab}}}<\frac{a+bc}{b+ac}<\sqrt{ab}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,1] | B. | [0,1) | C. | [0,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{n(2n-1)}{2}$ | B. | 2(2n2-n) | C. | $\frac{n^2}{2}$ | D. | 2n2-n |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com