如圖,已知正方體邊長(zhǎng)都為2,且,
E是BC的中點(diǎn),F(xiàn)是的中點(diǎn),
(1)求證:。(2分)
(2)求點(diǎn)A到的距離。(5分)
(3)求證:CF∥。(3分)
(4) 求二面角E-ND-A的平面角大小的
余弦值。(4分)
解:(1)∵平面ABCD.
∴ MD
------------2分
(2) 分別以DA,DC,DM為x軸,y軸,z軸建立空間直角坐標(biāo)系,則A(2,0,0), N(2,0,2),E(1,2,0),D(0,0,0), C(0,2,0), F(0,0,1), ------4分
則
設(shè)平面NDE的法向量是則 ,
取b="1. " 則------------6分
∴點(diǎn)A到平面NDE的距離是。----------7分
(2),,
∴ CF∥平面NDE。------------10分
(3)是面AND的法向量,
。------------12分
∵ 二面角E-ND-A為銳角------------13分
∴ 二面角E-ND-A的平面角大小的余弦值為。---------14分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)如圖, 在直角梯形中,
∥
點(diǎn)分別是的中點(diǎn),現(xiàn)將折起,使,
(1)求證:∥平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱中,,頂點(diǎn)在底面上的射影恰為點(diǎn),且.
(Ⅰ)證明:平面平面;
(Ⅱ)求棱與所成的角的大。
(Ⅲ)若點(diǎn)為的中點(diǎn),并求出二面角的平面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com