17.設(shè)a1=1,Sn為數(shù)列{an}的前n項和,且Sn+1-Sn+2Sn+1Sn=0,則數(shù)列{an}的通項公式為 an=$\left\{\begin{array}{l}{1,n=1}\\{-\frac{2}{4{n}^{2}-8n+3},n≥2}\end{array}\right.$.

分析 先根據(jù)遞推公式得到數(shù)列{$\frac{1}{{S}_{n}}$}是以1為首項,以2為公差的等差數(shù)列,求出Sn=$\frac{1}{2n-1}$,由此得到Sn-1=$\frac{1}{2n-3}$,故an=$\frac{1}{2n-1}$-$\frac{1}{2n-3}$,化簡整理即可.

解答 解:∵Sn+1-Sn+2Sn+1Sn=0,
∴$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=2,
∵a1=1,
∴$\frac{1}{{S}_{1}}$=$\frac{1}{{a}_{1}}$=1,
∴數(shù)列{$\frac{1}{{S}_{n}}$}是以1為首項,以2為公差的等差數(shù)列,
∴$\frac{1}{{S}_{n}}$=1+2(n-1)=2n-1,
∴Sn=$\frac{1}{2n-1}$,
∴Sn-1=$\frac{1}{2n-3}$,
∴an=$\frac{1}{2n-1}$-$\frac{1}{2n-3}$=$\frac{-2}{(2n-1)(2n-3)}$=-$\frac{2}{4{n}^{2}-8n+3}$,
當n=1時,不成立,
∴an=$\left\{\begin{array}{l}{1,n=1}\\{-\frac{2}{4{n}^{2}-8n+3},n≥2}\end{array}\right.$
故答案為:$\left\{\begin{array}{l}{1,n=1}\\{-\frac{2}{4{n}^{2}-8n+3},n≥2}\end{array}\right.$.

點評 本題考查了數(shù)列的通項公式的求法和等差數(shù)列的性質(zhì),屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.C${\;}_{3}^{0}$+C${\;}_{4}^{1}$+C${\;}_{5}^{2}$+…+C${\;}_{21}^{18}$的值等于7315.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.化簡$\frac{\sqrt{1-2sin39°cos39°}}{sin39°-cos39°}$=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.甲、乙兩船同時從B點出發(fā),甲船以每小時10($\sqrt{3}$-1)km的速度向正東航行,乙船以每小時20km的速度沿南偏東60°的方向航行,1小時后甲、乙兩船分別到達A、C兩點.
(Ⅰ)求A、C兩點間的距離;
(Ⅱ)求此時A點觀察C點的方位角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.F1,F(xiàn)2分別為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左、右焦點,點P在雙曲線上,滿足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,若△PF1F2的內(nèi)切圓半徑與外接圓半徑之比為$\frac{\sqrt{3}-1}{2}$,該曲線的離心率為$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.當a的取值范圍為(-1,3)時,方程|x2-4|=a+1有四個相異實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在△ABC中,角A,B,C的對邊分別為a,b,c,且(2a-c)cosB=bcosC,b=2
(Ⅰ)求角B的大小
(Ⅱ)求AB+BC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.等比數(shù)列{an}的通項為an=2•3n-1,現(xiàn)把每相鄰兩項之間都插入兩個數(shù),構(gòu)成一個新的等比數(shù)列{bn},那么162是新數(shù)列{bn}的( 。
A.第5項B.第12項C.第13項D.第6項

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=\sqrt{2},|{\overrightarrow b}|=2,(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$,則$\overrightarrow a,\overrightarrow b$的夾角是$\frac{π}{4}$.

查看答案和解析>>

同步練習冊答案