已知函數(shù)f(x)滿(mǎn)足:2f(x)+3f(x-1)=4x,求f(x)的解析式.
考點(diǎn):函數(shù)解析式的求解及常用方法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由2f(x)+3f(x-1)=4x①,得到2f(x-1)+3f(x)=4x-1②,由①②構(gòu)成方程組解得即可.
解答: 解:2f(x)+3f(x-1)=4x①,
令x=x-1,則
2f(x-1)+3f(x)=4x-1②,
由①②構(gòu)成方程組解得,
f(x)=
12
5x
-
8x
5
,
點(diǎn)評(píng):本題主要考查了利用解方程組法求解函數(shù)的解析式,屬于基礎(chǔ)性試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=cos(2x+
π
3
)-2sin2x.
(1)求函數(shù)f(x)的最大值和單調(diào)遞增區(qū)間;
(2)設(shè)A、B、C為△ABC的三個(gè)內(nèi)角,若cosB=
1
3
,f(
C
2
)=-2,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,曲線(xiàn)C1的參數(shù)方程為
x=acosϕ
y=bsinϕ
(a>b>0,ϕ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C2是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線(xiàn)C1上的點(diǎn)M(1,
3
2
)
對(duì)應(yīng)的參數(shù)ϕ=
π
3
,射線(xiàn)θ=
π
3
與曲線(xiàn)C2交于點(diǎn)D(1,
π
3
)

(Ⅰ)求曲線(xiàn)C1,C2的方程;
(Ⅱ)若點(diǎn)A(ρ1,θ),B(ρ2,θ+
π
2
)
在曲線(xiàn)C1上,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2ln|x|.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=kx-1有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cos
3
2
x,sin
3x
2
),
b
=(cos
x
2
,-sin
x
2
),其中x∈[-
π
2
,
π
2
].
(1)求證:(
a
+
b
)⊥(
a
-
b
);
(2)設(shè)函數(shù)f(x)=
a
b
+|
b
|2,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)在[-1,4]上的最大值為12,且關(guān)于x的不等式f(x)<0的解集為(0,5). 
(1)求f(x)的解析式;
(2)若對(duì)任意的實(shí)數(shù)x都有f(2-2cosx)<f(1-cosx-m)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解高一學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖(如圖),圖中從左到右各小長(zhǎng)方形面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.

(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上(含110次)為達(dá)標(biāo),試估計(jì)該學(xué)校全體高一的學(xué)生達(dá)標(biāo)的概率;
(3)為了分析學(xué)生的體能與身高,體重等方面的關(guān)系,必須再?gòu)臉颖局邪捶謱映闃臃椒ǔ槌?0人作進(jìn)一步分析,則體能在[120,130)的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,an+1=2Sn(n≥1),則a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,若a1=
1
2
,an=
1
1-an-1
(n≥2,n∈N+),則a2014的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案