分析 (1)由題意可得an+1=$\sqrt{{a_n}^2-2{a_n}+2}$+1,又a11=,可求得a2,再由a2的值求 a3,再由a3 的值求出a4的值,并猜想${a_n}=\sqrt{n-1}+1$.
(2)檢驗(yàn)n=1時(shí)等式成立,假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.
解答 解:(1)${a_2}=\sqrt{{a_1}^2-2{a_1}+2}+1$=2;${a_3}=\sqrt{{a_2}^2-2{a_2}+2}+1$=$\sqrt{2}+1$;${a_4}=\sqrt{{a_3}^2-2{a_3}+2}+1$=$\sqrt{3}+1$;猜想${a_n}=\sqrt{n-1}+1$;
(2)下面用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時(shí) 滿(mǎn)足猜想;
②假設(shè)n=k時(shí),${a_k}=\sqrt{k-1}+1$成立,
則${a_{k+1}}=\sqrt{{a_k}^2-2{a_k}+2}+1$=$\sqrt{{{({a_k}-1)}^2}+1}+1$=$\sqrt{{{(\sqrt{k-1})}^2}+1}+1$=$\sqrt{k}+1$=$\sqrt{(k+1)-1}+1$,
所以當(dāng)n=k+1時(shí),${a_{k+1}}=\sqrt{(k+1)-1}+1$也成立;
綜合①②${a_n}=\sqrt{n-1}+1$對(duì)n∈N*成立.
點(diǎn)評(píng) 本題考查數(shù)列的遞推公式,用數(shù)學(xué)歸納法證明等式成立.證明當(dāng)n=k+1時(shí)命題也成立,是解題的難點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,2) | B. | (-1,2) | C. | (0,2) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 6 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12種 | B. | 18種 | C. | 20種 | D. | 22種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sin2α | B. | cos2α | C. | tan2α | D. | cot2α |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com