15.設(shè)a1=1,an+1=$\sqrt{{a_n}^2-2{a_n}+2}$+1
(1)求a2,a3,a4,并猜想通項(xiàng)公式.
(2)用數(shù)學(xué)歸納法證明(1)的猜想.

分析 (1)由題意可得an+1=$\sqrt{{a_n}^2-2{a_n}+2}$+1,又a11=,可求得a2,再由a2的值求 a3,再由a3 的值求出a4的值,并猜想${a_n}=\sqrt{n-1}+1$.
(2)檢驗(yàn)n=1時(shí)等式成立,假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.

解答 解:(1)${a_2}=\sqrt{{a_1}^2-2{a_1}+2}+1$=2;${a_3}=\sqrt{{a_2}^2-2{a_2}+2}+1$=$\sqrt{2}+1$;${a_4}=\sqrt{{a_3}^2-2{a_3}+2}+1$=$\sqrt{3}+1$;猜想${a_n}=\sqrt{n-1}+1$;
(2)下面用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時(shí) 滿(mǎn)足猜想;
②假設(shè)n=k時(shí),${a_k}=\sqrt{k-1}+1$成立,
則${a_{k+1}}=\sqrt{{a_k}^2-2{a_k}+2}+1$=$\sqrt{{{({a_k}-1)}^2}+1}+1$=$\sqrt{{{(\sqrt{k-1})}^2}+1}+1$=$\sqrt{k}+1$=$\sqrt{(k+1)-1}+1$,
所以當(dāng)n=k+1時(shí),${a_{k+1}}=\sqrt{(k+1)-1}+1$也成立;
綜合①②${a_n}=\sqrt{n-1}+1$對(duì)n∈N*成立.

點(diǎn)評(píng) 本題考查數(shù)列的遞推公式,用數(shù)學(xué)歸納法證明等式成立.證明當(dāng)n=k+1時(shí)命題也成立,是解題的難點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果方程$\frac{{x}^{2}}{{a}^{2}-4}$+$\frac{{y}^{2}}{a+1}$=1表示焦點(diǎn)在y軸上的雙曲線,那么a的取值范圍是( 。
A.(-2,2)B.(-1,2)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.彩票公司每天開(kāi)獎(jiǎng)一次,從1,2,3,4四個(gè)號(hào)碼中隨機(jī)開(kāi)出一個(gè)作為中獎(jiǎng)號(hào)碼,開(kāi)獎(jiǎng)時(shí)如果開(kāi)出的號(hào)碼與前一天相同,就要重開(kāi),直到開(kāi)出與前一天不同的號(hào)碼為止.如果第一天開(kāi)出的號(hào)碼是4,則第五天開(kāi)出的號(hào)碼也同樣是4的概率為$\frac{7}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若f(x)=2f′(1)x-4lnx,則f(1)等于(  )
A.-8B.-4C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A=(0,1),B={6,7,8},從集合A和集合B分別取一個(gè)元素,作為直角坐標(biāo)系中的點(diǎn)的橫坐標(biāo)和縱坐標(biāo),則可確定的不同點(diǎn)的個(gè)數(shù)為( 。
A.5B.6C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知cos(α+$\frac{π}{4}$)=$\frac{{\sqrt{5}}}{5}$,α∈(0,$\frac{π}{2}$),則sinα=$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若-$\frac{π}{2}$<β<0<α<$\frac{π}{2}$,cos($\frac{π}{4}$+α)=$\frac{1}{3}$,cos($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,則cos(α+$\frac{β}{2}$)=$\frac{5\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.對(duì)如圖中的A、B、C、D四個(gè)區(qū)域染色,每塊區(qū)域染一種顏色,有公共邊的區(qū)域不同色,現(xiàn)有紅、黃、藍(lán)三種不同顏色可以選擇,則不同的染色方法共有(  )
A.12種B.18種C.20種D.22種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.化簡(jiǎn):$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=( 。
A.sin2αB.cos2αC.tan2αD.cot2α

查看答案和解析>>

同步練習(xí)冊(cè)答案