A. | $\sqrt{3}$ | B. | 2 | C. | $2\sqrt{2}$ | D. | $2\sqrt{3}$ |
分析 tan$\frac{A+B}{2}+tan\frac{C}{2}$=$\frac{1}{tan\frac{C}{2}}$+$tan\frac{C}{2}$=4,利用同角三角函數基本關系式可得:sinC=$\frac{1}{2}$,C=$\frac{π}{6}$或$\frac{5π}{6}$.可得sinBsinC=$\frac{1}{2}$sinB=cos2$\frac{A}{2}$=$\frac{1+cosA}{2}$.對C分類討論,利用和差公式、三角函數的單調性即可得出.
解答 解:∵tan$\frac{A+B}{2}+tan\frac{C}{2}$=$\frac{1}{tan\frac{C}{2}}$+$tan\frac{C}{2}$=4,∴$\frac{cos\frac{C}{2}}{sin\frac{C}{2}}$+$\frac{sin\frac{C}{2}}{cos\frac{C}{2}}$=4,∴sinC=$\frac{1}{2}$,∴C=$\frac{π}{6}$或$\frac{5π}{6}$.
∴sinBsinC=$\frac{1}{2}$sinB=cos2$\frac{A}{2}$=$\frac{1+cosA}{2}$.
①C=$\frac{5π}{6}$時,sinB=1+cos$(\frac{π}{6}-B)$>1,舍去;
②C=$\frac{π}{6}$時,sinB=1+cos$(\frac{5π}{6}-B)$,化為sin$(B+\frac{π}{3})$=1,
解得B=$\frac{π}{6}$.
∴b=$\frac{\sqrt{3}}{cos\frac{π}{6}}$=2.
故選:B.
點評 本題考查了三角函數的單調性、和差公式、倍角公式、同角三角函數基本關系式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | -3 | C. | $\frac{1}{3}$ | D. | 7 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 8 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1-i}{2}$ | B. | $\frac{1+i}{2}$ | C. | $\frac{-1-i}{2}$ | D. | $\frac{-1+i}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com