1.函數(shù)f(x)=lg(x-1)+$\frac{2}{{\sqrt{2-x}}}$的定義域為(1,2).

分析 由對數(shù)式的真數(shù)大于0,分母中根式內(nèi)部的代數(shù)式大于0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{x-1>0}\\{2-x>0}\end{array}\right.$,解得1<x<2.
∴函數(shù)f(x)=lg(x-1)+$\frac{2}{{\sqrt{2-x}}}$的定義域為(1,2).
故答案為:(1,2).

點評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,a,b,c分別是角A,B,C所對的邊長,a=2$\sqrt{3}$,tan$\frac{A+B}{2}+tan\frac{C}{2}$=4,sinBsinC=cos2$\frac{A}{2}$.則b=(  )
A.$\sqrt{3}$B.2C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.復(fù)數(shù)z=(a2-2a-3)+(|a-2|-1)i是純虛數(shù),則實數(shù)a的取值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知i是虛數(shù)單位,復(fù)數(shù)z滿足$\frac{z}{1-z}$=i,則$\overline z$=( 。
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}$i-$\frac{1}{2}$D.-$\frac{1}{2}$i-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.參數(shù)方程$\left\{{\begin{array}{l}{x=2+cosθ}\\{y=3+sinθ}\end{array}}\right.$(θ為參數(shù))表示的平面曲線是( 。
A.雙曲線B.橢圓C.D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知b>0,直線(b2+1)x+ay+2=0與直線x-b2y-1=0相垂直,則ab的最小值等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,3x>0,命題q:0<x<2是log2x<1的充分不必要條件,則下列命題為真命題的是( 。
A.¬pB.p∧qC.p∧(¬q)D.¬p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.?dāng)?shù)列{an}中,a1=1,$\frac{{a}_{n}}{{a}_{n-1}}$=2n(n≥2,n∈N),則{an}的通項公式為an=${2}^{\frac{(n-1)(n+2)}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=lgsinx+$\frac{1}{{\sqrt{cosx}}}$的定義域為(2kπ,2kπ+$\frac{π}{2}$),k∈Z.

查看答案和解析>>

同步練習(xí)冊答案