1.下列命題中正確的是( 。
A.若a>b,則ac2>bc2B.若a>b,則a2>b2
C.若a>b,c>d,則ac>bdD.若a>b,c<d,則a-c>b-d

分析 利用不等式的性質(zhì)判斷D,舉反例判斷A,B,C.

解答 解:對(duì)與A,當(dāng)c=0時(shí),不成立,
對(duì)于B:當(dāng)a=1,b=-2時(shí)不成立,
對(duì)于C:當(dāng)a>0,b,c,d<0時(shí),不成立,
對(duì)于D:若a>b,c<d,則-c>-d,則a-c>b-d,故成立,
故選:D.

點(diǎn)評(píng) 本題主要考查不等式性質(zhì)的應(yīng)用,要求熟練掌握常見不等式的運(yùn)算性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.[普通中學(xué)做]已知向量$\overrightarrow{a}$=(1,k),$\overrightarrow$=(2,3),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)k的值為(  )
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知z是復(fù)數(shù),z+2i與$\frac{z}{1-i}$均為實(shí)數(shù)(i為虛數(shù)單位)且復(fù)數(shù)(z+ai)2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知|$\overrightarrow a}$|=5,|$\overrightarrow b}$|=4,$\overrightarrow a$與$\overrightarrow b$的夾角θ=120°,則$\overrightarrow a•\overrightarrow b$等于(  )
A.10B.-10C.20D.-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ax+$\frac{x}$,其中a,b為常數(shù),曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是3x-y+2=0.
(1)確定f(x)的解析式;
(2)求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.不等式x(x-1)>2的解集為( 。
A.{x|-1<x<2}B.{x|-2<x<1}C.{x|x<-2或x>1}D.{x|x<-1或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.[示范高中]設(shè)x,y滿足的約束條件為$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=4ax+by(a>0,b>0)的最大值為8,則a2+b2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.底面的半徑為1且母線長(zhǎng)為$\sqrt{2}$的圓錐的體積為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.πD.$\frac{4}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知數(shù)列{an}是等差數(shù)列,且a3+a11=50,a4=13,則公差d=( 。
A.1B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案