6.“${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$”是“l(fā)og2a>log2b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由“${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$”?a>b,“l(fā)og2a>log2b”?a>b>0.即可判斷出結(jié)論.

解答 解:“${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$”?a>b,
“l(fā)og2a>log2b”?a>b>0.
∴“${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$”是“l(fā)og2a>log2b”的必要不充分條件.
故選:B.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a1+2a2=4,a42=4a3a7,則a5=( 。
A.$\frac{1}{8}$B.$\frac{1}{16}$C.20D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為$ρ=\sqrt{3}sinθ+cosθ$,曲線C3的極坐標(biāo)方程為$θ=\frac{π}{6}$.
(1)把曲線C1的參數(shù)方程化為極坐標(biāo)方程;
(2)曲線C3與曲線C1交于O,A,與曲線C2交于O,B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若圓x2+y2-12x+16=0與直線y=kx交于不同的兩點(diǎn),則實(shí)數(shù)k的取值范圍為(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.(-$\sqrt{5}$,$\sqrt{5}$)C.(-$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將正方形ABCD沿對角線BD折成直二面角后的圖形如圖所示,若E為線段BC的中點(diǎn),則直線AE與平面ABD所成角的余弦為(  )
A.$\frac{1}{4}$B.$\frac{{\sqrt{6}}}{6}$C.$\frac{{\sqrt{30}}}{6}$D.$\frac{{\sqrt{15}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{2^n}{{{S_n}{S_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2log2an-1,求數(shù)列$\{\frac{1}{{{b_n}{b_{n+1}}}}\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在四棱錐P-ABCD中,PC⊥底面ABCD,M,N分別是PD,PA的中點(diǎn),AC⊥AD,∠ACD=∠ACB=60°,PC=AC.
(1)求證:PA⊥平面CMN;
(2)求證:AM∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足不等式$\left\{\begin{array}{l}{y≤x+2}\\{x+y≤4}\\{y≥0}\end{array}\right.$,則x+2y的最大值為7.

查看答案和解析>>

同步練習(xí)冊答案