16.已知橢圓的中心在坐標原點O,焦點在x軸上,橢圓上、下頂點與焦點所組成的四邊形為正方形,四個頂點圍成的圖形面積為$2\sqrt{2}$.
(1)求橢圓的方程;
(2)直線l過點P(0,2)且與橢圓相交于A、B兩點,當(dāng)△AOB面積取得最大值時,求直線l的方程.

分析 (1)由題意可知:焦點在x軸上,設(shè)橢圓方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b})$,由b=c,$2ab=2\sqrt{2}$及b2+c2=a2,解得a和b的值,即可求得橢圓的方程;
(2)設(shè)出直線l的方程和A,B的坐標,進而把直線方程代入橢圓方程,消去y,由△>0,求得k的范圍,根據(jù)韋達定理求得x1+x2,x1x2的表達式,根據(jù)弦長公式及點到直線的距離公式求得|AB|及d,求得△AOB的面積的表達式,利用基本不等式的關(guān)系,求得S的最大值,進而求得k,則直線方程可得.

解答 解:(1)設(shè)橢圓方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b})$,
由已知得b=c,且$2ab=2\sqrt{2}$,
又由b2+c2=a2,
解得a2=2,b2=c2=1,所以橢圓方程為$\frac{x^2}{2}+{y^2}=1$;
(2)由題意知直線l的斜率存在,設(shè)直線l的方程為y=kx+2,A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}y=kx+2\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$,消去y得關(guān)于x的方程:(1+2k2)x2+8kx+6=0,
由直線l與橢圓相交于A、B兩點,
∴△>0⇒64k2-24(1+2k2)>0,解得${k^2}>\frac{3}{2}$,
又由韋達定理得$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{8k}{{1+2{k^2}}}\\{x_1}•{x_2}=\frac{6}{{1+2{k^2}}}\end{array}\right.$,
∴$|{AB}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\sqrt{1+{k^2}}\sqrt{{{({{x_1}+{x_2}})}^2}-4{x_1}{x_2}}=\frac{{\sqrt{1+{k^2}}}}{{1+2{k^2}}}\sqrt{16{k^2}-24}$.
原點O到直線l的距離$d=\frac{2}{{\sqrt{1+{k^2}}}}$,
所以${S_{△ABC}}=\frac{1}{2}|{AB}|•d=\frac{{\sqrt{16{k^2}-24}}}{{1+2{k^2}}}=\frac{{2\sqrt{2}•\sqrt{2{k^2}-3}}}{{1+2{k^2}}}$,
令$m=\sqrt{2{k^2}-3}({m>0})$,則2k2=m2+3,
∴$S=\frac{{2\sqrt{2}m}}{{{m^2}+4}}=\frac{{2\sqrt{2}}}{{m+\frac{4}{m}}}≤\frac{{\sqrt{2}}}{2}$,當(dāng)且僅當(dāng)$m=\frac{4}{m}$,
即m=2時,${S_{max}}=\frac{{\sqrt{2}}}{2}$,
此時$k=±\frac{{\sqrt{14}}}{2}$,
所以,所求直線方程為$±\sqrt{14}x-2y+4=0$.

點評 本題考查了橢圓的標準方程及其性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系、點到直線的距離公式,考查基本不等式的應(yīng)用,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,四邊形BDCE內(nèi)接于以BC為直徑的⊙A,已知:$BC=10,cos∠BCD=\frac{3}{5},∠BCE=30°$,則線段DE的長是(  )
A.$\sqrt{89}$B.7$\sqrt{3}$C.4+3$\sqrt{3}$D.3+4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.sin(-$\frac{4}{3}$π)+$\sqrt{3}$cos$\frac{2}{3}$π-tan$\frac{25}{4}$π的值為( 。
A.$-\sqrt{3}+1$B.$-\sqrt{3}-1$C.$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4. 如圖,已知AB為圓O的直徑,C為圓O上的一點,過點C作圓O的切線CD,過點A作AD⊥CD于D,交圓O于點E.
(Ⅰ)求證:∠EAC=∠OAC;
(Ⅱ)若CD=$\sqrt{3}$,DE=1,BC=2,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.直線l經(jīng)過兩點A(2,3),B(4,1),則直線l的斜率為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將函數(shù)f(x)=2sin2x的圖象向右移動φ(0<φ<$\frac{π}{2}$)個單位長度,所得的部分圖象如圖所示,則φ的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{12}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若0<a<b<1,c>1,則( 。
A.ac>bcB.logac<logbcC.alogbc<blogacD.abc>bac

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若-$\frac{3π}{2}$<θ<-π,則點(tanθ,cosθ)在( 。
A.第一象限B.第三象限C.第二象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.測得某地10對父子的身高(單位:英寸)如表:
父親身高x60626465666768707274
兒子身高y63.665.26665.566.967.167.468.370.170
(1)如果y與x之間具有線性相關(guān)關(guān)系,求線性回歸方程;
(2)如果父親的身高為73英寸,估計兒子的身高為多少.

查看答案和解析>>

同步練習(xí)冊答案