12.如圖所示,在三棱錐ABC-A1B1C1中,底面△ABC為邊長(zhǎng)為6的等邊三角形,點(diǎn)A1在平面ABC內(nèi)的射影為△ABC的中心.
(1)求證:BC⊥BB1;
(2)若AA1與底面ABC所成角為60°,P為CC1的中點(diǎn),求二面角B1-PA-C的余弦值.

分析 (1)點(diǎn)A1在底面△ABC內(nèi)的射影為O,連結(jié)A1O,取BC的中點(diǎn)E,連結(jié)AE,推導(dǎo)出A1O⊥BC,AE⊥BC,從而B(niǎo)C⊥面A1AO,進(jìn)而B(niǎo)C⊥AA1,由此能證明BC⊥BB1
(2)由(1)得A1O,AO,BC兩兩垂直,建立空間直角坐標(biāo)系,利用向量法能求出二面角B1-PA-C的余弦值.

解答 證明:(1)點(diǎn)A1在底面△ABC內(nèi)的射影為O,連結(jié)A1O,
取BC的中點(diǎn)E,連結(jié)AE,
∵A1O⊥面ABC,BC?面ABC,∴A1O⊥BC,
又∵AE⊥BC,AE∩A1O=O,∴BC⊥面A1AO,
∵AA1?面A1AO,∴BC⊥AA1,
∵AA1∥BB1,∴BC⊥BB1
解:(2)由(1)得A1O,AO,BC兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,
∵A1O⊥面ABC,∴∠A1AO為AA1與底面ABC所成角,
∵AB=6,∴$AO=\frac{\sqrt{3}}{3}×6=2\sqrt{3}$,$OE=\sqrt{3}$,
由$\frac{{A}_{1}O}{AO}=\sqrt{3}$,得A1O=6,
∴A(2$\sqrt{3}$,0,0),B(-$\sqrt{3}$,3,0),C($-\sqrt{3},-3,0$),A1(0,0,6),
由$\overrightarrow{C{C}_{1}}$=$\overrightarrow{A{A}_{1}}$,得C1(-3$\sqrt{3}$,-3,6),
由$\overrightarrow{B{B}_{1}}$=$\overrightarrow{A{A}_{1}}$,得B1($-3\sqrt{3},6,3$),∴P(-2$\sqrt{3}$,-3,3),
$\overrightarrow{AP}$=(-4$\sqrt{3}$,-3,3),$\overrightarrow{P{B}_{1}}$=(-$\sqrt{3},6,3$),$\overrightarrow{AC}$=(-3$\sqrt{3}$,-3,0),
設(shè)平面PAB1的一個(gè)法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AP}=-4\sqrt{3}x-3y+3z=0}\\{\overrightarrow{n}•\overrightarrow{P{B}_{1}}=-\sqrt{3}x+6y+3z=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3},-1,3$),
設(shè)平面PAC的一個(gè)法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AP}=-4\sqrt{3}a-3b+3c=0}\\{\overrightarrow{m}•\overrightarrow{AC}=-3\sqrt{3}a-3b=0}\end{array}\right.$,取a=$\sqrt{3}$,得$\overrightarrow{m}$=($\sqrt{3},-3,1$),
設(shè)二面角B1-PA-C的平面角為θ,由圖知θ為鈍角,
則cosθ=-$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=-$\frac{9}{13}$.
∴二面角B1-PA-C的余弦值為-$\frac{9}{13}$.

點(diǎn)評(píng) 本題考查線線垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意的n∈N*,都有2,an,Sn為等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的通項(xiàng)公式是bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+2}}$,試比較{bn}的前n項(xiàng)和Tn與$\frac{3}{4}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知不共線的兩個(gè)向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,設(shè)向量$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$,則($\frac{1}{3}$$\overrightarrow{a}$+$\overrightarrow$)+($\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow$)+(2$\overrightarrow$-$\overrightarrow{a}$)=-2$\overrightarrow{{e}_{1}}$+$\frac{5}{6}\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)$sin(\frac{π}{4}+θ)=\frac{1}{3}$,則$cos(2θ+\frac{π}{2})$=( 。
A.$\frac{7}{9}$B.$\frac{1}{9}$C.$-\frac{7}{9}$D.$-\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.四棱柱ABCD-A1B1C1D1的三視圖如圖,
(1)求證:D1C⊥AC1;
(2)面ADC1與BB1交于點(diǎn)M,求證:MB=MB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知$\overrightarrow{a}$=(1,a),$\overrightarrow$=(sinx,cosx).函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的圖象經(jīng)過(guò)點(diǎn)(-$\frac{π}{3}$,0).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的最小正周期與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0},a>0,
(1)若A⊆B,求a的取值范圍;
(2)若A∩B={x|3<x<4},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.記等差數(shù)列{an}的前n項(xiàng)和為Sn,若a6+a10-a12=8,a14-a8=4,則S19=228.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在數(shù)列{an}中,a1=1,an+1=an+1,則a2014等于( 。
A.2 013B.2 012C.2 011D.2 014

查看答案和解析>>

同步練習(xí)冊(cè)答案