分析 利用換元法轉(zhuǎn)化為二次函數(shù)求解值域即可.
解答 解:由題意:函數(shù)y=x+$\sqrt{2-x}$,
令t=$\sqrt{2-x}$,則函數(shù)t的值域?yàn)閇0,+∞),可得:x=2-t2,
那么:函數(shù)y=x+$\sqrt{2-x}$轉(zhuǎn)化為f(t)=2-t2+t,
開(kāi)口向下,對(duì)稱(chēng)軸t=$\frac{1}{2}$,
∵t≥0,
∴當(dāng)t=$\frac{1}{2}$時(shí),函數(shù)f(t)取得最大值為$f(\frac{1}{2})_{max}$=$\frac{9}{4}$,
即函數(shù)y=x+$\sqrt{2-x}$的最大值為$\frac{9}{4}$.
∴函數(shù)y=x+$\sqrt{2-x}$的值域?yàn)椋?∞,$\frac{9}{4}$].
故選D.
點(diǎn)評(píng) 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24 | B. | 25 | C. | 26 | D. | 27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,0) | B. | ($\frac{1}{7}$,$\frac{2}{7}$) | C. | ($\frac{2}{7}$,$\frac{1}{7}$) | D. | ($\frac{1}{7}$,$\frac{1}{14}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-2) | B. | (0,+∞) | C. | (2,+∞) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com