已知函數(shù)f(1-x)的定義域是[1,4],則函數(shù)f(x)的定義域是
 
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系,即可得到結(jié)論.
解答: 解:∵f(1-x)的定義域是[1,4],
∴1≤x≤4,則-4≤-x≤-1,
即-3≤1-x≤0,
則函數(shù)f(x)的定義域是[-3,0],
故答案為:[-3,0]
點評:本題主要考查函數(shù)定義域的求解,根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某造紙廠擬建一座平面圖形為矩形且面積為200平方米的二級污水處理池,池的深度一定,池的外圈周壁建造單價每米400元,中間一條隔壁建造單價為每米100元,池底建造單價每平方米60元(池壁忽略不計).問污水處理池的長設(shè)計為多少米時,可使總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P,M,N分別在函數(shù)y=2x+2,y=
4x-x2
,y=x+3的圖象上,且
MN
=2
PN
,則點P橫坐標(biāo)的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M=
0
1
1
0
,N=
0
1
-1
0
.在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對應(yīng)的變換作用下得到的曲線F,曲線F的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的首項為10,前n項和Sn滿足:3Sn+1=3Sn+2an,則數(shù)列的前n項和的Sn最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx,有以下4個命題
①對任意的x1、x2∈(0,+∞),有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
;
②對任意的x1、x2∈(1,+∞),且x1<x2,有f(x1)-f(x2)<x2-x1;
③對任意的x1、x2∈(e,+∞),且x1<x2有x1f(x2)<x2f(x1);
④對任意的0<x1<x2,總有x0∈(x1,x2),使得f(x0)≤
f(x1)-f(x2)
x1-x2

其中正確的是
 
(填寫序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二項式(
x
+
1
x
6的展開式中常數(shù)項的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg|x-1|的圖象是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2+2x+a
x
,x∈[1,+∞),若對任意x∈[1,+∞),f(x)>1恒成立,則實數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案