【題目】已知函數(shù)f(x)=loga(ax2﹣x+1),其中a>0且a≠1.
(1)當(dāng)a= 時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)f(x)在區(qū)間 上為增函數(shù)時(shí),求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:當(dāng) 時(shí), 恒成立,
故定義域?yàn)镽,
又∵ ,且函數(shù) 在(0,+∞)單調(diào)遞減,
∴ ,即函數(shù)f(x)的值域?yàn)椋ī仭蓿?]
(2)解:依題意可知,
i)當(dāng)a>1時(shí),由復(fù)合函數(shù)的單調(diào)性可知,必須ax2﹣x+1在 上遞增,且ax2﹣x+1>0對(duì) 恒成立.
故有 ,解得:a≥2;
ii)當(dāng)0<a<1時(shí),同理必須ax2﹣x+1在 上遞減,且ax2﹣x+1>0對(duì) 恒成立.
故有 ,解得: .
綜上,實(shí)數(shù)a的取值范圍為
【解析】(1)當(dāng)a=時(shí),可判斷出函數(shù)f(x)的定義域?yàn)镽,結(jié)合復(fù)合函數(shù)的單調(diào)性,不難得出f(x)的值域,(2)對(duì)a進(jìn)行分類討論,結(jié)合復(fù)合函數(shù)的單調(diào)性,解出a的取值范圍.
【考點(diǎn)精析】利用函數(shù)的值域和復(fù)合函數(shù)單調(diào)性的判斷方法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的;復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則關(guān)于x的不等式cx2+bx+a>0的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的是( )
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“ ≥2”的充分必要條件
C.命題“若x2﹣3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2﹣3x+2≠0”
D.命題p:?x∈R,使得x2+x﹣1<0,則¬p:?x∈R,使得x2+x﹣1≥0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,
(1)畫(huà)出函數(shù)f(x)的圖象;
(2)求f(f(3))的值;
(3)求f(a2+1)(a∈R)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集為R,集合A={x|y=lgx+ },B={x| <2x﹣a≤8}.
(1)當(dāng)a=0時(shí),求(RA)∩B;
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】人們生活水平的提高,越來(lái)越注重科學(xué)飲食.營(yíng)養(yǎng)學(xué)家指出,成人良好的日常飲食應(yīng)該至少提供0.075kg的碳水化合物,0.06kg的蛋白質(zhì),0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白質(zhì),0.14kg脂肪,花費(fèi)28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白質(zhì),0.07kg脂肪,花費(fèi)21元.為了滿足營(yíng)養(yǎng)專家指出的日常飲食要求,同時(shí)使花費(fèi)最低,每天需要同時(shí)食用食物A和食物B多少kg?最低花費(fèi)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z=3+bi(b∈R),且(1+3i)z為純虛數(shù).
(1)求復(fù)數(shù)z;
(2)若 ,求復(fù)數(shù)w的模|w|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐A﹣BCDE中,底面BCDE為平行四邊形,平面ABE⊥平面BCDE,AB=AE,DB=DE,∠BAE=∠BDE=90°
(1)求異面直線AB與DE所成角的大;
(2)求二面角B﹣AE﹣C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com