分析 根據(jù)正切函數(shù)的圖象與性質,即可得出不等式成立的條件是什么.
解答 解:由tanθ≥1知,$\frac{π}{4}$+kπ≤θ<$\frac{π}{2}$+kπ,k∈Z;
當k=0時,$\frac{π}{4}$≤θ<$\frac{π}{2}$,
當k=1時,$\frac{5π}{4}$≤θ<$\frac{3π}{2}$;
所以在0≤θ≤2π內,使tanθ≥1成立的角θ的取值范圍是
[$\frac{π}{4}$,$\frac{π}{2}$)∪[$\frac{5π}{4}$,$\frac{3π}{2}$).
故答案為:$[\frac{π}{4},\frac{π}{2})∪[\frac{5π}{4},\frac{3π}{2})$.
點評 本題考查了正切函數(shù)的圖象與性質的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
數(shù)N | 1.010 | 1.015 | 1.017 | 1.310 | 2.000 |
對數(shù)lgN | 0.004 3 | 0.006 5 | 0.007 3 | 0.117 3 | 0.301 0 |
數(shù)N | 3.000 | 5.000 | 12.48 | 13.11 | 13.78 |
對數(shù)lgN | 0.477 1 | 0.699 0 | 1.096 2 | 1.117 6 | 1.139 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com