設(shè)x,y滿足約束條件 
x+y≥1
x-2y≥-2
3x-2y≤3
,若x2+y2≥a恒成立,則實數(shù)a的最大值為( 。
A、
53
2
B、1
C、
2
2
D、
1
2
考點:簡單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由約束條件作出可行域,數(shù)形結(jié)合得到可行域內(nèi)的點到原點的最小值,則答案可求.
解答: 解:由約束條件
x+y≥1
x-2y≥-2
3x-2y≤3
作出可行域如圖,

則x2+y2的最小值為(0,0)到直線x+y-1=0的距離,大于
|-1|
2
=
2
2

∴滿足x2+y2≥a恒成立的實數(shù)a的最大值為
2
2

故選:C.
點評:本題考查了簡單的線性規(guī)劃問題,考查了數(shù)形結(jié)合的解題思想方法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了點到直線距離公式的應(yīng)用,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O為AC與BD的交點,E為PB上任意一點.
(1)證明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,PD=
6
,AD=2,求二面角B-AE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足不等式組
x-2≤0
y-1≤0
x+2y-a≥0
,且目標(biāo)函數(shù)z=x-2y的最大值為1,則a=( 。
A、
1
3
B、
1
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1-an=2n(n∈N),Sn是數(shù)列{an}的前n項和,則S2012=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程
x2
25-m
+
y2
16-m
=1表示一個橢圓時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-ax+1在區(qū)間[2,+∞)內(nèi)是增函數(shù),則實數(shù)a的取值范圍是(  )
A、a≤12B、a<12
C、a≥12D、a>12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心為(1,-1),半徑為2的圓的方程是( 。
A、(x-1)2+(y+1)2=2
B、(x-1)2+(y-1)2=4
C、(x+1)2+(y-1)2=2
D、(x-1)2+(y+1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

α∈(-
π
6
, 
π
3
]
,則cosα的范圍是( 。
A、(-
3
2
,
1
2
]
B、(-
1
2
,
3
2
]
C、[
1
2
, 1]
D、[
1
2
,  
3
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

樣本11、12、13、14、15的方差是( 。
A、13B、10C、2D、4

查看答案和解析>>

同步練習(xí)冊答案