6.已知定義在R上的函數(shù)f(x)=3|x-m|-2(m為實數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(3m),則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

分析 根據(jù)f(x)為偶函數(shù)便可求出m=0,從而f(x)=3|x|-1,這樣便知道f(x)在[0,+∞)上單調(diào)遞增,根據(jù)f(x)為偶函數(shù),便可將自變量的值變到區(qū)間[0,+∞)上:a=f(|log0.53|),b=f(log25),c=f(0),然后再比較自變量的值,根據(jù)f(x)在[0,+∞)上的單調(diào)性即可比較出a,b,c的大。

解答 解:∵f(x)為偶函數(shù),
∴f(-x)=f(x),
∴3|-x-m|-1=3|x-m|-1,
∴|-x-m|=|x-m|;
(-x-m)2=(x-m)2;
∴mx=0;
∴m=0;
∴f(x)=3|x|-1;
∴f(x)在[0,+∞)上單調(diào)遞增,
并且a=f(|log0.53|)=f(log23),b=f(log25),c=f(0);
∵0<log23<log25;
∴c<a<b.
故選:D.

點評 本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調(diào)性,對于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調(diào)性去比較函數(shù)值大。畬(shù)的換底公式的應(yīng)用,對數(shù)函數(shù)的單調(diào)性,函數(shù)單調(diào)性定義的運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知ABC-A1B1C1是各棱長均等于a的正三棱柱,D是側(cè)棱CC1的中點,則直線AD與平面ABB1A1所成角的正弦值是$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ex•[-x2+(4a+2)x-3a2-4a-2],其中e為自然對數(shù)的底數(shù).
(1)當(dāng)a≠0時,試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)0<a<1時,記函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若x∈[1-a,1+a]時,恒有|f′(x)|≤a•ex成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知符號函數(shù)sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,f(x)=x2-2x,則函數(shù)F(x)=sgn[f(x)]-f(x)的零點個數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于82為合格品,小于82為次品.現(xiàn)隨機抽取這兩種芯片各100件進行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標(biāo)[70,76)[76,82)[82,88)[88,94)[94,100]
芯片甲81240328
芯片乙71840296
(1)試分別估計芯片甲,芯片乙為合格品的概率;
(2)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(1)的前提下,記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤,求隨機變量X的分布列及生產(chǎn)1件芯片甲和1件芯片乙所得總利潤的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合A={x|1+2x-3x2>0},B={x|2x(4x-1)<0},則A∩(∁RB)=$(-\frac{1}{3},0]∪[\frac{1}{4},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,三棱錐C-ADB中,CA=CD=AB=BD=2,AD=2$\sqrt{3}$,BC=1,則二面角C-AD-B的平面角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(ax2-lnx)(x-lnx)(a∈R).
(1)當(dāng)a=6時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x2-|x|,若f(log3(m+1))<f(2),則實數(shù)m的取值范圍是(-$\frac{8}{9}$,8).

查看答案和解析>>

同步練習(xí)冊答案