19.設(shè)b∈R,復(fù)數(shù)(1+bi)(2+i)是純虛數(shù),則b=2.

分析 利用復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義即可得出.

解答 解:b∈R,復(fù)數(shù)(1+bi)(2+i)=2-b+(1+2b)i是純虛數(shù),
則$\left\{\begin{array}{l}{2-b=0}\\{1+2b≠0}\end{array}\right.$,解得b=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,函數(shù)f(x)的圖象是折線(xiàn)段ABC,其中A,B,C的坐標(biāo)分別為(0,4),(2,0),(4,4),則$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}滿(mǎn)足$\frac{a_n}{{{a_{n-1}}}}$=3(n∈N*,n≥2),a4=9.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)bn=1-2log3an,若數(shù)列{bn}的前k項(xiàng)和Sk=-45,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.用反證法證明“凸四邊形的四個(gè)內(nèi)角中至少有一個(gè)不小于90°”時(shí),首先要作出的假設(shè)是( 。
A.四個(gè)內(nèi)角都大于90°B.四個(gè)內(nèi)角中有一個(gè)大于90°
C.四個(gè)內(nèi)角都小于90°D.四個(gè)內(nèi)角中有一個(gè)小于90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在數(shù)列{an}中,an=-2n2+29n+3,則此數(shù)列最大項(xiàng)的值是( 。
A.102B.$\frac{865}{8}$C.$\frac{817}{8}$D.108

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)函數(shù)f(x)=g(x)+x3,曲線(xiàn)y=g(x)在點(diǎn)(1,g(1))處的切線(xiàn)方程為y=2x+1,則曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處切線(xiàn)的斜率為(  )
A.4B.-$\frac{1}{4}$C.5D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.對(duì)于集合A={a1,a2,…,an}(n∈N*,n≥3),定義集合S={x|x=ai+aj,1≤i<j≤n},若an=2n+1,則集合S中各元素之和為4n2+2n-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在△ABC中,BC邊上的中線(xiàn)AD長(zhǎng)為3,且cosB=$\frac{{\sqrt{10}}}{8}$,cos∠ADC=-$\frac{1}{4}$.
(1)求sin∠BAD的值;
(2)求DC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知直線(xiàn)l:x+2y-3=0,直線(xiàn)l1過(guò)點(diǎn)(2,3).
(1)若l1⊥l,求直線(xiàn)l1的方程;
(2)若l1∥l,求直線(xiàn)l1的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案