10.已知數(shù)列{an}滿足$\frac{a_n}{{{a_{n-1}}}}$=3(n∈N*,n≥2),a4=9.
(1)求數(shù)列{an}的通項公式an;
(2)設(shè)bn=1-2log3an,若數(shù)列{bn}的前k項和Sk=-45,求k的值.

分析 (1)利用等比數(shù)列的通項公式即可得出.
(2)利用對數(shù)的運算性質(zhì)、等差數(shù)列的求和公式即可得出.

解答 解:(1)∵數(shù)列{an}滿足$\frac{a_n}{{{a_{n-1}}}}$=3(n∈N*,n≥2),a4=9.
∴數(shù)列{an}是公比為3的等比數(shù)列,an=${a}_{4}×{3}^{n-4}$=9×3n-4=3n-2
(2)bn=1-2log3an=1-2(n-2)=5-2n.
∴數(shù)列{bn}的前k項和Sk=$\frac{k(3+5-2k)}{2}$=-45,化為k2-4k-45=0.k∈N*
解得k=9.

點評 本題考查了對數(shù)的運算性質(zhì)、等比數(shù)列與等差數(shù)列的通項公式及其求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=|x2-2x-3|,若a<b<1,且f(a)=f(b),則u=2a+b的最小值為3-2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=2x3-3(a+$\frac{1}{a}}$)x2+6x+1,其中a>0.
(1)若函數(shù)f(x)沒有極值,求實數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間(2,3)上單調(diào)遞減,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O分別交CA、CB于點E,F(xiàn),點G是AD的中點
(1)求證:GE是⊙O的切線;
(2)若GE=BD=2,EC=$\frac{9}{5}$,求BC值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知sinα═$\frac{3}{5}$,求:$\frac{sin(-α-\frac{3π}{2})•sin(\frac{3π}{2}-α)•ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)•cos(\frac{π}{2}+α)•co{s}^{2}(π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.解方程$\frac{a-x}{b+x}$=5-$\frac{4(b+x)}{a-x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,已知拋物線y2=4x,過點P(2,0)作斜率分別為k1,k2的兩條直線,與拋物線相交于點A、B和C、D,且M、N分別是AB、CD的中點
(1)若k1+k2=0,$\overrightarrow{AP}=2\overrightarrow{PB}$,求線段MN的長;
(2)若k1•k2=-1,求△PMN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)b∈R,復數(shù)(1+bi)(2+i)是純虛數(shù),則b=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.不等式9x2+6x+1≤0的解集是( 。
A.{x|x≠-$\frac{1}{3}$}B.{x|-$\frac{1}{3}$≤x≤$\frac{1}{3}$}C.D.{x|x=-$\frac{1}{3}$}

查看答案和解析>>

同步練習冊答案