10.已知集合A={x|x2-2x-3<0},B={y|y=$\sqrt{{x^2}+1}$,x∈R},則(∁RB)∩A=(  )
A.{x|-1<x<1}B.{x|-1<x≤1}C.{x|1≤x<3}D.{x|-1<x<0}

分析 解一元二次不等式x2-2x-3<0即可得出集合A,容易得出$y=\sqrt{{x}^{2}+1}≥1$,從而可求出集合B,然后進(jìn)行補(bǔ)集、交集的運(yùn)算便可求出(∁RB)∩A.

解答 解:A={x|-1<x<3};
x2+1≥1,∴$\sqrt{{x}^{2}+1}≥1$;
∴B={y|y≥1};
∴∁RB={y|y<1}={x|x<1};
∴(∁RB)∩A={x|-1<x<1}.
故選A.

點(diǎn)評(píng) 考查描述法表示集合的定義及表示形式,一元二次不等式的解法,以及不等式的性質(zhì),補(bǔ)集和交集的運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.現(xiàn)有4種不同顏色要對(duì)如圖所示的四個(gè)部分進(jìn)行著色,要求有公共邊界的兩部分不能用同一種顏色,則不同的著色方法共有 ( 。
A.144種B.72種C.64種D.84種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)y=f(x)的定義域?yàn)閧x|x∈R,且x≠0},且滿足f(x)-f(-x)=0,當(dāng)x>0時(shí),f(x)=lnx-x+1,則函數(shù)y=f(x)的大致圖象為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是$\left\{\begin{array}{l}x=-2+4t\\ y=3t\end{array}\right.$(t為參數(shù)).
(1)寫出曲線C的參數(shù)方程,直線l的普通方程;
(2)求曲線C上任意一點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=λcos2(ωx+$\frac{π}{6}$)-3(λ>0,ω>0)的最大值為2,最小正周期為$\frac{2π}{3}$.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某四棱錐的三視圖如圖所示(單位:cm),則該幾何體的體積是( 。
A.18cm3B.6cm3C.$\frac{9}{2}c{m^3}$D.$\frac{27}{2}c{m^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在不等式組$\left\{\begin{array}{l}x-y≤0\\ x+y≥0\\ y≤a\end{array}\right.$確定的平面區(qū)域中,若z=x+2y的最大值為9,則a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,正六邊形ABCDEF的邊長(zhǎng)為2,P是線段DE上的任意一點(diǎn),則$\overrightarrow{AP}$•$\overrightarrow{BF}$的取值范圍為[0,6]..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知a,b∈R,集合A={1,b,a+b},$B=\left\{{0,\frac{a},a}\right\}$,且A=B,則a+2b=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案