10.設(shè)i是虛數(shù)單位,z=$\frac{3-i}{1-i}$,則$\overline{z}$等于( 。
A.2-iB.2+iC.1-2iD.1+2i

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,則$\overline{z}$可求.

解答 解:z=$\frac{3-i}{1-i}$=$\frac{(3-i)(1+i)}{(1-i)(1+i)}=\frac{4+2i}{2}=2+i$,
則$\overline{z}$=2-i.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.當(dāng)x∈[0,1]時(shí),不等式ax3-x2+4x+3≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.直線y=ax+a與圓x2+y2=1的位置關(guān)系一定是( 。
A.與a的取值有關(guān)B.相切C.相交D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD是矩形,且PA⊥CD,PA=AD,M、N分別為AB、PC的中點(diǎn).求證:
(Ⅰ)MN∥平面PAD;
(Ⅱ)MN⊥CD;
(Ⅲ)MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+3cosα\\ y=-3+3sinα\end{array}$(α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ-2ρsinθ-3=0.
(1)分別寫出曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)若曲線C1與曲線C2交于P、Q兩點(diǎn),求△POQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知拋物線的方程為y2=2px(p>0),O為坐標(biāo)原點(diǎn),A、B為拋物線上的點(diǎn),若△OAB為等邊三角形,且面積為12$\sqrt{3}$,則p的值為( 。
A.2B.1C.3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.曲線f(x)=-$\sqrt{x}$在x=1處的切線方程為x+2y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求下列函數(shù)的定義域:
(1)f(x)=$\sqrt{\sqrt{4-{x}^{2}}-1}$;
(2)f(x)=$\frac{ln(1-|x-1|)}{x-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=|x-1|-1,g(x)=-|x+1|-4.
(1)若函數(shù)f(x)的值不大于1,求x的取值范圍;
(2)若不等式f(x)-g(x)≥m+1的解集為R,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案