15.已知拋物線的方程為y2=2px(p>0),O為坐標原點,A、B為拋物線上的點,若△OAB為等邊三角形,且面積為12$\sqrt{3}$,則p的值為( 。
A.2B.1C.3D.$\frac{1}{2}$

分析 設B(x1,y1),A(x2,y2),由于|OA|=|OB|,可得x12+y12=x22+y22.代入化簡可得:x1=x2.由拋物線對稱性,知點B、A關(guān)于x軸對稱.不妨設直線OB的方程為:y=$\frac{\sqrt{3}}{3}$x,與拋物線方程聯(lián)立解出即可得出.

解答 解:設B(x1,y1),A(x2,y2),
∵|OA|=|OB|,∴x12+y12=x22+y22
又∵y12=2px1,y22=2px2,
∴x22-x12+2p(x2-x1)=0,
即(x2-x1)(x1+x2+2p)=0.
又∵x1、x2與p同號,∴x1+x2+2p≠0.
∴x2-x1=0,即x1=x2
由拋物線對稱性,知點B、A關(guān)于x軸對稱.
不妨設直線OB的方程為:y=$\frac{\sqrt{3}}{3}$x,
聯(lián)立y2=2px,解得B(6p,2$\sqrt{3}$p).
∵面積為12$\sqrt{3}$,
∴$\frac{\sqrt{3}}{4}•(4\sqrt{3}p)^{2}=12\sqrt{3}$,∴p=1
故選B.

點評 本題考查了拋物線的標準方程及其性質(zhì)、直線與拋物線相交問題、等邊三角形的性質(zhì),考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,且∠DAB=60°,PA=PD,M為CD的中點,BD⊥PM.
(1)求證:平面PAD⊥平面ABCD;
(2)若∠PAD=60°,求直線AB與平面PBM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.α是三角形的內(nèi)角,則函數(shù)y=-2sin2α-3cosα+7的最值情況是(  )
A.既沒有最大值,又沒有最小值B.既有最大值10,又有最小值$\frac{31}{8}$
C.只有最大值10?D.只有最小值$\frac{31}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=a2lnx-x2+ax(a≠0),g(x)=(m-1)x2+2mx-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若a=1時,關(guān)于x的不等式f(x)≤g(x)恒成立,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設i是虛數(shù)單位,z=$\frac{3-i}{1-i}$,則$\overline{z}$等于( 。
A.2-iB.2+iC.1-2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}滿足an+1=2an-n+1,n∈N*,a1=3,
(1)求a2-2,a3-3,a4-4的值;
(2)根據(jù)(1)的結(jié)果試猜測{an-n}是否為等比數(shù)列,證明你的結(jié)論,并求出{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,長方體ABCD-A1B1C1D1中,已知AB=BC=2,AA1=1,線段AC1的三個視圖所在的直線所成的最小角的余弦值為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{{\sqrt{5}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設f:x→x2是集合M到集合N的映射,若N={4,0,9},則M不可能是( 。
A.{0}B.{2,3}C.{0,1,2}D.{0,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.非空集合G關(guān)于運算⊕滿足:(1)對任意a,b∈G,都有a⊕b∈G;
(2)存在e∈G,使得對一切a∈G,都有a⊕e=e⊕a=a,則稱G關(guān)于運算⊕為“融洽集”.
現(xiàn)給出下列集合和運算:
①G={非負整數(shù)},⊕為整數(shù)的加法;
②G={偶數(shù)},⊕為整數(shù)的乘法;
③G={平面向量},⊕為平面向量的加法;
④G={二次三項式},⊕為多項式的加法;
⑤G={虛數(shù)},⊕為復數(shù)的乘法.
其中G關(guān)于運算⊕為“融洽集”的是(  )
A.①③B.②③C.①⑤D.②③④

查看答案和解析>>

同步練習冊答案