分析 (Ⅰ)取PD中點(diǎn)E,并連結(jié)NE、AE,證明四邊形AMNE為平行四邊形,可得AE∥MN,即可證明MN∥平面PAD;
(Ⅱ)證明CD⊥平面PAD,可得CD⊥AE又AE∥MN,即可證明MN⊥CD;
(Ⅲ)證明AE⊥平面PCD又AE∥MN,即可證明MN⊥平面PCD.
解答 證明:(Ⅰ)取PD中點(diǎn)E,并連結(jié)NE、AE,
∵M(jìn)、N分別為AB、PC的中點(diǎn)
∴NE∥CD且$NE=\frac{1}{2}CD$,AM∥CD且$AM=\frac{1}{2}CD$,
∴AM∥NE且AM=NE,
∴四邊形AMNE為平行四邊形,
∴AE∥MN,
又∵AE?在平面PAD,MN?在平面PAD,
∴MN∥平面PAD;
(Ⅱ)證明:∵四邊形ABCD為矩形,
∴AD⊥CD,
又PA⊥CD,PA∩AD=A
∴CD⊥平面PAD.
又∵AE?在平面PAD,
∴CD⊥AE.
又∵AE∥MN,
∴MN⊥CD;
(Ⅲ)∵PA=AD,E為PD中點(diǎn),
∴AE⊥PD,
又∵CD⊥AE,
∴AE⊥平面PCD.
又∵AE∥MN,
∴MN⊥平面PCD.
點(diǎn)評(píng) 本題考查線面平行、垂直的證明,考查學(xué)生分析解決問題的能力,正確運(yùn)用線面平行、垂直的判定定理是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $27\sqrt{2}+9\sqrt{5}+9$ | B. | $27\sqrt{2}+18\sqrt{5}$ | C. | $9\sqrt{2}+9\sqrt{5}+27$ | D. | $36+9\sqrt{5}+18\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
時(shí)間 | 第4天 | 第8天 | 第16天 | 第22天 |
價(jià)格(元) | 23 | 24 | 22 | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 既沒有最大值,又沒有最小值 | B. | 既有最大值10,又有最小值$\frac{31}{8}$ | ||
C. | 只有最大值10? | D. | 只有最小值$\frac{31}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-i | B. | 2+i | C. | 1-2i | D. | 1+2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com